Effects of nitrogen topdressing and paclobutrazol at different stages on spike differentiation and yield of winter wheat

Author:

Li Dongxiao1,Mo Shaojing1,Batchelor William D.2,Cheng Ruiting1,Wang Hongguang1,Li Ruiqi1

Affiliation:

1. State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China

2. Auburn University, Auburn, Alabama, United States of America

Abstract

Background Optimal nitrogen (N) application and plant growth regulators can improve wheat productivity. This can help to improve yield level and ensure food security with limited resources in the Huang-Huai-Hai Plain of China (HPC). Methods A 2-year field experiment was conducted using a randomized block design with four treatments (TS-N topdressing at pseudostem erection stage ; TPS-N topdressing combined with paclobutrazol application at pseudostem erection stage; TJ-N topdressing at jointing stage; TPJ-N topdressing at combined with paclobutrazol application at jointing stage) in 2011–2013. Results The grain number per ear, thousand kernel weight and yield for the TJ and TPJ treatments were higher than those of the TS and TPS treatments. Grain number per ear, yield, and thousands kernel weigh for the TPJ treatment were significantly higher than for the TS and TPS in 2011–2012 (9.82% and 7.27%, 10.23% and 8.99%, 6.12% and 5.58%) and in 2012–2013 (10.21% and 11.55%, 8.00% and 6.58%, 0.00 and 0.00), respectively. Thousands kernel weight under TJ were significantly higher than those under TS and TPS by 13.21% and 14.03%, respectively in 2012–2013. The floret number, significantly correlated with cytokinin content, was also significantly increased under TJ and TPJ at connectivum differentiation stage. For TPJ treatment, the floret number was significantly higher than for the TS, TPS, and TJ by 19.92%, 10.21%, 6.10% in 2011–2012; it was higher than for the TS and TPS by 28.06% and 29.61% in 2012–2013, respectively. The relative expression level of cytokinin oxidase/dehydrogenase gene (TaCKX2.2) was improved during flowering, when cytokinin content was at high level and was also inhibited by paclobutrazol with different degrees. Conclusions Therefore, nitrogen topdressing at jointing stage had increased grain number per ear, thousand kernel weight, and grain yield of wheat. Paclobutrazol could delay spike differentiation and promote cytokinin accumulation that induced expression of TaCKX2.2, maintaining hormonal balance and affecting wheat spike morphogenesis.

Funder

National System of Modern Agriculture Industrial Technology Project

National Key Research and Development Program of China

Scientific Research Project of Hebei Education Department

Hebei Province Natural Science Foundation for Youth

Science and Technology Program of Baoding

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference47 articles.

1. Differential effects of paclobutrazol on water stress alleviation through electrolyte leakage, phytohormones, reduced glutathione and lipid peroxidation in some wheat genotypes (Triticum aestivum L.) grown in-vitro;Aly;Romanian Biotechnological Letters,2011

2. Cytokinin oxidase regulates rice grain production;Ashikari;Science,2005

3. N uptake and yield of wheat as influenced by integrated use of organic and mineral nitrogen;Azam;International Journal of Plant Production,2009

4. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana;Bartrina;The Plant Cell,2011

5. Effect of postponing N application on the yield, apparent N recovery and N absorption of winter wheat;Chen;Plant Nutrition and Fertilizer Science,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3