N-acetylcysteine protects against motor, optomotor and morphological deficits induced by 6-OHDA in zebrafish larvae

Author:

Benvenutti Radharani1,Marcon Matheus1,Reis Carlos G.1,Nery Laura R.2,Miguel Camila3,Herrmann Ana P.4ORCID,Vianna Monica R.M.23,Piato Angelo14ORCID

Affiliation:

1. Programa de Pós-graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

2. Programa de Pós-graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

3. Programa de Pós-graduação em Zoologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

4. Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

Abstract

Background Parkinson’s disease (PD) is the second most common neurodegenerative disorder. In addition to its highly debilitating motor symptoms, non-motor symptoms may precede their motor counterparts by many years, which may characterize a prodromal phase of PD. A potential pharmacological strategy is to introduce neuroprotective agents at an earlier stage in order to prevent further neuronal death. N-acetylcysteine (NAC) has been used against paracetamol overdose hepatotoxicity by restoring hepatic concentrations of glutathione (GSH), and as a mucolytic in chronic obstructive pulmonary disease by reducing disulfide bonds in mucoproteins. It has been shown to be safe for humans at high doses. More recently, several studies have evidenced that NAC has a multifaceted mechanism of action, presenting indirect antioxidant effect by acting as a GSH precursor, besides its anti-inflammatory and neurotrophic effects. Moreover, NAC modulates glutamate release through activation of the cystine-glutamate antiporter in extra-synaptic astrocytes. Its therapeutic benefits have been demonstrated in clinical trials for several neuropsychiatric conditions but has not been tested in PD models yet. Methods In this study, we evaluated the potential of NAC to prevent the damage induced by 6-hydroxydopamine (6-OHDA) on motor, optomotor and morphological parameters in a PD model in larval zebrafish. Results NAC was able to prevent the motor deficits (total distance, mean speed, maximum acceleration, absolute turn angle and immobility time), optomotor response impairment and morphological alterations (total length and head length) caused by exposure to 6-OHDA, which reinforce and broaden the relevance of its neuroprotective effects. Discussion NAC acts in different targets relevant to PD pathophysiology. Further studies and clinical trials are needed to assess this agent as a candidate for prevention and adjunctive treatment of PD.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3