LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis inPhotorhabdusandXenorhabdus

Author:

Heinrich Antje K.1,Hirschmann Merle1,Neubacher Nick1,Bode Helge B.12

Affiliation:

1. Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany

2. Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, Germany

Abstract

The Gram-negative bacteriaPhotorhabdusandXenorhabdusare known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production ofPhotorhabdusandXenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production inPhotorhabdus.In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deletedluxSin three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNAmicA, which is encoded directly upstream ofluxS, did not influence NP levels. Phenotypic differences between theP. luminescens luxSdeletion mutant and an earlier describedluxSdeficient strain ofP. luminescenssuggested that two phenotypically different strains have evolved in different laboratories.

Funder

European research starting grant

Deutsche Forschungsgemeinschaft

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3