Construction of afurnull mutant and RNA-sequencing provide deeper global understanding of theAliivibrio salmonicidaFur regulon

Author:

Thode Sunniva Katharina1,Bækkedal Cecilie1,Söderberg Jenny Johansson1,Hjerde Erik1,Hansen Hilde1,Haugen Peik1

Affiliation:

1. Department of Chemistry and The Norwegian Structural Biology Centre, Faculty of Science and Technology, UiTThe Arctic University of Norway, Tromsø, Norway

Abstract

BackgroundThe ferric uptake regulator (Fur) is a transcription factor and the main regulator of iron acquisition in prokaryotes. When bound to ferric iron, Fur recognizes its DNA binding site and generally executes its function by repressing transcription of its target genes. Due to its importance in virulence, the Fur regulon is well studied for several model bacteria. In our previous work, we used computational predictions and microarray to gain insights into Fur-regulation inAliivibrio salmonicida, and have identified a number of genes and operons that appear to be under direct control of Fur. To provide a more accurate and deeper global understanding of the biological role of Fur we have now generated anA. salmonicida furknock-out strain and used RNA-sequencing to compare gene expression between the wild-type andfurnull mutant strains.ResultsAnA. salmonicida furnull mutant strain was constructed. Biological assays demonstrate that deletion offurresults in loss of fitness, with reduced growth rates, and reduced abilities to withstand low-iron conditions, and oxidative stress. When comparing expression levels in the wild-type and thefurnull mutant we retrieved 296 differentially expressed genes distributed among 18 of 21 functional classes of genes. A gene cluster encoding biosynthesis of the siderophore bisucaberin represented the highest up-regulated genes in thefurnull mutant. Other highly up-regulated genes all encode proteins important for iron acquisition. Potential targets for the RyhB sRNA was predicted from the list of down-regulated genes, and significant complementarities were found between RyhB and mRNAs of thefur,sodB,cysNand VSAL_I0422 genes. Other sRNAs with potential functions in iron homeostasis were identified.ConclusionThe present work provides by far the most comprehensive and deepest understanding of the Fur regulon inA. salmonicidato date. Our data also contribute to a better understanding of how Fur plays a key role in iron homeostasis in bacteria in general, and help to show how Fur orchestrates iron uptake when iron levels are extremely low.

Funder

Norwegian National Graduate School in Structural Biology (Biostruct)

UiT The Arctic University of Norway

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3