A real-time PCR assay to accurately quantify polar bear DNA in fecal extracts

Author:

Hayward Kristen M.1ORCID,Harwood Michelle P.12ORCID,Lougheed Stephen C.1,Sun Zhengxin1,Van Coeverden de Groot Peter1,Jensen Evelyn L.13ORCID

Affiliation:

1. Department of Biology, Queen’s University, Kingston, ON, Canada

2. Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

3. Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA

Abstract

DNA extracted from fecal samples contains DNA from the focal species, food, bacteria and pathogens. Most DNA quantification methods measure total DNA and cannot differentiate among sources. Despite the desirability of noninvasive fecal sampling for studying wildlife populations, low amounts of focal species DNA make it difficult to use for next-generation sequencing (NGS), where accurate DNA quantification is critical for normalization. Two factors are required prior to using fecal samples in NGS libraries: (1) an accurate quantification method for the amount of target DNA and (2) a determination of the relative amount of target DNA needed for successful single nucleotide polymorphism genotyping assays. Here, we address these needs by developing primers to amplify a 101 bp region of the nuclear F2 gene and a quantitative PCR (qPCR) assay that allows the accurate quantification of the amount of polar bear (Ursus maritimus) DNA in fecal extracts. We test the assay on pure polar bear DNA extracted from muscle tissue and find a high correlation between fluorometric and qPCR quantifications. The qPCR assay was also successfully used to quantify the amount of DNA derived from polar bears in fecal extractions. Orthologs of the F2 gene have been identified across vertebrates; thus, similar qPCR assays could be developed for other species to enable noninvasive studies.

Funder

Genome Canada and the Ontario Genomics Institute

Natural Science and Engineering Council of Canada

Undergraduate Student Research Awards from NSERC

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3