Drought-induced reduction in methane fluxes and its hydrothermal sensitivity in alpine peatland

Author:

Wu Haidong123,Yan Liang123,Li Yong123,Zhang Kerou123,Hao Yanbin4,Wang Jinzhi123,Zhang Xiaodong123,Yan Zhongqing123,Zhang Yuan4,Kang Xiaoming123

Affiliation:

1. Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China

2. Beijing Key Laboratory of Wetland Services and Restoration, Beijing, China

3. Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, China

4. University of Chinese Academy of Science, Beijing, China

Abstract

Accurate estimation of CH4 fluxes in alpine peatland of the Qinghai-Tibetan Plateau under extreme drought is vital for understanding the global carbon cycle and predicting future climate change. However, studies on the impacts of extreme drought on peatland CH4 fluxes are limited. To study the effects of extreme drought on CH4 fluxes of the Zoige alpine peatland ecosystem, the CH4 fluxes during both extreme drought treatment (D) and control treatment (CK) were monitored using a static enclosed chamber in a control platform of extreme drought. The results showed that extreme drought significantly decreased CH4 fluxes in the Zoige alpine peatland by 31.54% (P < 0.05). Extreme drought significantly reduced the soil water content (SWC) (P < 0.05), but had no significant effect on soil temperature (Ts). Under extreme drought and control treatments, there was a significant negative correlation between CH4 fluxes and environmental factors (Ts and SWC), except Ts, at a depth of 5cm (P < 0.05). Extreme drought reduced the correlation between CH4 fluxes and environmental factors and significantly weakened the sensitivity of CH4 fluxes to SWC (P < 0.01). Moreover, it was found that the correlation between subsoil (20 cm) environmental factors and CH4 fluxes was higher than with the topsoil (5, 10 cm) environmental factors under the control and extreme drought treatments. These results provide a better understanding of the extreme drought effects on CH4 fluxes of alpine peatland, and their hydrothermal impact factors, which provides a reliable reference for peatland protection and management.

Funder

National Nonprofit Institute Research Grant

The National Key Research and Development Program of China

The National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3