The impact of diel vertical migration on fatty acid patterns and allocation in Daphnia magna

Author:

Hahn Meike Anika1,Von Elert Eric1

Affiliation:

1. Department of Biology, University of Cologne, Cologne, North Rhine-Westphalia, Germany

Abstract

In freshwater zooplankton diel vertical migration (DVM) is a widespread predator-avoidance behavior that is induced by kairomones released from fish. Thereby zooplankton reduces predation by fish by staying in deep and dark colder strata during daytime and migrating into warmer layers during night, and thus experiences diel alterations in temperature. Constantly lower temperatures have been shown to increase the relative abundance of polyunsaturated fatty acids (PUFAs) in Daphnia sp. Furthermore, a low dietary supply of the ω3-PUFA eicosapentaenoic acid (EPA) has been shown to limit the induction of DVM in Daphnia magna and the performance of D. magna under fluctuating temperatures, as experienced during DVM. In nature DVM of D. magna in response to fish is accompanied by the presence of fish-borne kairomone and diel fluctuations of depth dependent-parameters like temperature, food, and oxygen supply. Here we investigated the effect of factors, which are differing between Daphnia that perform DVM and those which do not. We selected to examine the effect of changing temperature and light conditions and of the presence/absence of fish kairomones on D. magna. For this purpose, we conducted a full factorial experimental design in which we grew D. magna under constantly warm temperatures in a diel light-dark regime or under alternating temperatures in darkness crossed with the presence or absence of fish kairomones. We analyzed the fatty acid composition of mature animals and of their offspring in each treatment. Simulation of the light and temperature regime of migrating animals in presence of the fish kairomone resulted in an increased relative allocation of the ω3-PUFA EPA, from adult animals to their offspring, manifesting as decreased EPA concentrations in mothers and increased EPA concentrations in their offspring in response to simulated DVM (mothers). Additionally, EPA concentrations in the offspring were affected by the interaction of simulated DVM and the fish cue. The presence of the fish kairomone alone increased the EPA concentration in the offspring, that was not experiencing simulated DVM. These findings lead to the conclusion that the temperature and light regime associated with DVM alone, as well as in combination with the DVM-inducing fish kairomones, alter the allocation of fatty acids to the offspring in a manner, which is beneficial for the offspring under the decreased average temperatures, which migrating animals are exposed to. A low dietary supply of ω3-PUFAs may constrain D. magna’s amplitude of DVM, but our results suggest that the next generation of animals may be capable of regaining the full DVM amplitude due to the effect of the fish kairomone and the experienced temperature fluctuations (and darkness) on tissue fatty acid composition. These findings suggest that fatty acid limitation in DVM performing Daphnia may be more severe for the maternal than for the offspring generation.

Funder

German Science Foundation

DFG priority program 1704 DynaTrait

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference57 articles.

1. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters;Ahlgren;Journal of Plankton Research,1990

2. Predator evasion in zooplankton is suppressed by polyunsaturated fatty acid limitation;Brzezinski;Oecologia,2015

3. Evolutionary adaptation of membranes to temperature;Cossins;Proceedings of the National Academy of Sciences of the United States of America,1978

4. Metabolic costs during predator-induced dielvertical migration of Daphnia;Dawidowicz;Limnology and Oceanography,1992

5. The ecological role of chemical stimuli for the zooplankton: predator-avoidance behavior in Daphnia;Dodson;Limnology and Oceanography,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3