Proteomic variations after short-term heat shock treatment reveal differentially expressed proteins involved in early microspore embryogenesis in cabbage (Brassica oleracea)

Author:

Su Henan12,Chen Guo12,Yang Limei2,Zhang Yangyong2,Wang Yong2,Fang Zhiyuan12,Lv Honghao2

Affiliation:

1. Hunan Agricultural University, Changsha, China

2. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China

Abstract

Microspore embryogenesis (ME), a widely used haploid breeding method that can considerably shorten the breeding cycle, provides an efficient mean of cultivating many important Brassica crops, such as cabbage, Chinese cabbage, and oilseed rape. For cabbage, in many cases, short-term heat shock treatment can strongly increase the embryogenesis rate, however, the underlying mechanism of this effect has not been elucidated. In this study, we compared the proteomics of isolated microspores with samples pretreated at 32 °C for 24 h and 25 °C for 24 h using two cabbage accessions (Zhonggan 628 and 87–534) showing highly different embryogenic rates. The embryo yield was 19.7 embryos/bud in Zhonggan 628 after 32 °C treatment, while no embryoid was observed in Zhonggan 628 after 25 °C treatment as well as in 87–534 at both temperatures. We identified a total of 363 and 282 differentially expressed proteins (DEPs) for Zhonggan 628 and 87–534 via a label-free proteomics technology. There were 97 DEPs specifically identified only in Zhonggan 628 but not in 87–534 after 32 °C heat-shock treatment that may be related to heat shock-induced embryogenesis in vitro culture. These DEPs were primarily enriched in carbon metabolic process, protein synthesis and degradation process, and signal transduction. Based on protein-protein interaction and pathway enrichment analyses, we proposed that SGT1 homolog A and B(SGT1), heat shock 70 kDa protein 5 (HSP70), cell division control protein 48 homolog A (CDC48) and fatty acyl-CoA reductase (FAR) might play important roles in microspore embryogenesis. This proteomic study may contribute to our molecular understanding of cabbage microspore embryogenesis and help to build a high-efficiency haploid breeding system.

Funder

The National Key Research and Development Program of China

The Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

The Modern Agro-Industry Technology Research System of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3