Rapid identification of melioidosis agent by an insulated isothermal PCR on a field–deployable device

Author:

Chua Kek Heng1,Tan E. Wei1,Chai Hwa Chia1,Puthucheary SD2,Lee Ping Chin3,Puah Suat Moi1

Affiliation:

1. Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

2. Faculty of Medicine, University of Malaya, University of Malaya, Kuala Lumpur, Malaysia

3. Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia

Abstract

Background Burkholderia pseudomallei causes melioidosis, a serious illness that can be fatal if untreated or misdiagnosed. Culture from clinical specimens remains the gold standard but has low diagnostic sensitivity. Method In this study, we developed a rapid, sensitive and specific insulated isothermal Polymerase Chain Reaction (iiPCR) targeting bimA gene (Burkholderia Intracellular Motility A; BPSS1492) for the identification of B. pseudomallei. A pair of novel primers: BimA(F) and BimA(R) together with a probe were designed and 121 clinical B. pseudomallei strains obtained from numerous clinical sources and 10 ATCC non-targeted strains were tested with iiPCR and qPCR in parallel. Results All 121 B. pseudomallei isolates were positive for qPCR while 118 isolates were positive for iiPCR, demonstrating satisfactory agreement (97.71%; 95% CI [93.45–99.53%]; k = 0.87). Sensitivity of the bimA iiPCR/POCKIT assay was 97.52% with the lower detection limit of 14 ng/µL of B. pseudomallei DNA. The developed iiPCR assay did not cross-react with 10 types of non-targeted strains, indicating good specificity. Conclusion This bimA iiPCR/POCKIT assay will undoubtedly complement other methodologies used in the clinical laboratory for the rapid identification of this pathogen.

Funder

University Of Malaya Special Research Fund Assistance

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3