Estimating food resource availability in arid environments with Sentinel 2 satellite imagery

Author:

Funghi Caterina12,Heim René H.J.23,Schuett Wiebke145,Griffith Simon C.25,Oldeland Jens3

Affiliation:

1. Institute of Zoology, Universität Hamburg, Hamburg, Germany

2. Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia

3. Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany

4. School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom

5. Department of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

Abstract

Background In arid environments, plant primary productivity is generally low and highly variable both spatially and temporally. Resources are not evenly distributed in space and time (e.g., soil nutrients, water), and depend on global (El Niño/ Southern Oscillation) and local climate parameters. The launch of the Sentinel2-satellite, part of the European Copernicus program, has led to the provision of freely available data with a high spatial resolution (10 m per pixel). Here, we aimed to test whether Sentinel2-imagery can be used to quantify the spatial variability of a minor tussock grass (Enneapogon spp.) in an Australian arid area and whether we can identify different vegetation cover (e.g., grass from shrubs) along different temporal scenarios. Although short-lasting, the Enneapogon grassland has been identified as a key primary food source to animals in the arid environment. If we are able to identify and monitor the productivity of this species remotely, it will provide an important new tool for examining food resource dynamics and subsequent animal responses to them in arid habitat. Methods We combined field vegetation surveys and Sentinel2-imagery to test if satellite spectral data can predict the spatial variability of Enneapogon over time, through GLMMs. Additionally, a cluster analysis (‘gower’ distance, ‘complete’ method), based on Enneapogon seed-productivity, and total vegetation cover in October 2016, identified three clusters: bare ground, grass dominated and shrub dominated. We compared the vegetation indices between these different clusters from October 2016 to January 2017. Results We found that MSAVI2 and NDVI correlated with the proportion of Enneapogon with seeds across the landscape and this relationship changed over time. Both vegetation indices (MSAVI2 and NDVI) were higher in patches with high seed-productivity of Enneapogon than in bare soil, but only in October, a climatically-favorable period during which this dominant grass reached peak seed-productivity. Discussion MSAVI2 and NDVI provided reliable estimates of the heterogeneity of vegetation type across the landscape only when measured in the Austral spring. This means that grass cover is related to seed-productivity and it is possible to remotely and reliably predict food resource availability in arid habitat, but only in certain conditions. The lack of significant differences between clusters in the summer was likely driven by the short-lasting nature of the vegetation in the study and the sparseness of the grass-dominated vegetation, in contrast to the shrub vegetation cluster that was particularly well measured by the NDVI. Conclusions Overall, our study highlights the potential for Sentinel2-imagery to estimate and monitor the change in grass seed availability remotely in arid environments. However, heterogeneity in grassland cover is not as reliably measured as other types of vegetation and may only be well detected during periods of peak productivity (e.g., October 2016).

Funder

Deutsche Forschungsgemeinschaft

RC Future Fellowship Grant

Joint Degree International Macquarie University Research Excellence Scholarship

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3