Revision of Gyrodactylus salaris phylogeny inspired by new evidence for Eemian crossing between lineages living on grayling in Baltic and White sea basins

Author:

Mieszkowska Agata1,Górniak Marcin1,Jurczak-Kurek Agata1,Ziętara Marek S.1

Affiliation:

1. Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, Gdańsk, Poland

Abstract

In this research, grayling-specific Gyrodactylus salaris Malmberg, 1957 isolates from Baltic Sea basin were collected in Sweden for the first time. Samples were obtained in three drainage systems: Kalixälven (River Kaitum), Ljungan (River Sölvbacka strömmar), and Umeälven (River Juktån). Three molecular markers were analysed: nuclear ITS rDNA (Internal Transcribed Spacer) and ADNAM1 (Anonymous DNA Marker 1), and mitochondrial cox1 gene. As a result, four new mitochondrial haplotypes were identified (III-C1tt, III-C1ttht, IX-A1tt and X-A1tt). The ADNAM1 analyses resulted in revealing two new alleles (WS4 and BS9) and two new genotypes (T6 and T7). T7 seems to be an indicator of ancient crossing between Baltic and White Sea lineages of the parasite which happened during a first 3000-year period of Eemian interglacial about 130,000 years ago in the connection between Baltic and White Sea. Molecular clock estimates were adjusted, revealing the mean substitution rate and the divergence rate among branches of 3.6% (95% HPD: 2.2%–5.2%) and 7.2% per million years, respectively. As a result, cox1 phylogeny rooted with the introgressed haplotypes has been revised and altered in accordance to new data, revealing fourteen equidistant lineages five of which have been excluded from the study. Based on the new phylogenetic approach, including the molecular clock, this work suggests an overall revision of G. salaris phylogeny and attempts at precisely drawing the division of lineages within this polytypic species as well as proposes unification in nomenclature for its strains.

Funder

Polish Ministry of Science and Higher Education

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3