Identification of Dendrobiums in situ by Raman spectroscopy and micro-computed tomography imaging

Author:

Zhang Wei1,You Yu-Ting1,Guo Jian-Ying1,Wang Si-Ming1,Liu Chang-Qing2,Zhao Da-Qing1,Wang Jia-Wen1,Bai Xue-Yuan1

Affiliation:

1. Changchun University of Chinese Medicine, Chang Chun, China

2. Guangzhou Zeli Pharmaceutical Technology Co., Ltd, Guang Zhou, China

Abstract

Background Dendrobium candidum/officinale (Dendrobium candidum Wall.ex Lindl.; Dendrobium officinale Kimura et Migo) is an expensive medicinal plant used mainly as a tonic in China. Tie-pi-feng-dou is the common name of the processed medicinal Dendrobium candidum/officinale. The market prices of Dendrobium sources vary significantly and it is difficult to identify different types of Dendrobiums due to their similar appearances. The use of counterfeit Dendrobium candidum/officinale is ubiquitous and problematic. Therefore, it is important to be able to discriminate between the wide range of available Dendrobium. Methods In an effort to better distinguish between the varieties of Dendrobium, Raman spectroscopy was used to detect specific Dendrobiums relative to their source. Transport channel imaging of the microstructural sites by micro-computed tomography (micro-CT) was used to identify the unique constitution and enrichment status of dendrobines, which was determined mainly by the geographical source of the Dendrobium. This implies that exclusive spectral traits may be unique to different regions. The presence or absence of these traits differ among the geographical origins. Results We can identify several spectral traits for various Dendrobiums. An intense peak at 1,525 cm−1 was only found in Dendrobium candidum/officinale (Zhe-jiang/Yun-nan/An-hui), while the characteristic Dendrobium candidum/officinale bands were near 742 cm−1, 1,326 cm−1 and 1,330 cm−1. A systematic method for distinguishing between four geographical locations of Dendrobium (Zhe-jiang/Yun-nan/An-hui/Gui-zhou) were established. This reveals that the origin of an unknown Dendrobium may be identified by Raman spectroscopy and micro-CT imaging. This method was shown to be efficacious, fast, and non-destructive.

Funder

The National Natural Science Foundation of China

the National Key Research and Development Program of China

The Xinglin scholar project for Changchun University of Chinese Medicine

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3