Effect of acidity/alkalinity of deep eutectic solvents on the extraction profiles of phenolics and biomolecules in defatted rice bran extract

Author:

Sombutsuwan Piraporn1,Durand Erwann23,Aryusuk Kornkanok14

Affiliation:

1. Lipid Technology Research Laboratory, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand

2. Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France

3. CIRAD, UMR QualiSud, Montpellier, France

4. Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand

Abstract

This study investigated the influence of deep eutectic solvent (DES) acidity/alkalinity on the extraction profiles of phenolics and other biomolecules (phytic acid, reducing sugar, and protein) in defatted rice bran (DFRB). The DES with varying pH levels were prepared using different hydrogen bond acceptors (choline chloride (ChCl) and potassium carbonate (K2CO3)) and hydrogen bond donors (lactic acid, urea, and glycerol). The results reveal that the acidic DES (ChCl-lactic acid; pH 0.42) demonstrated superior extraction efficiency for total phenolic acids (4.33 mg/g), phytic acid (50.30 mg/g), and reducing sugar (57.05 mg/g) while having the lowest protein content (5.96 mg/g). The alkaline DES (K2CO3-glycerol; pH 11.21) showed the highest levels of total phenolic acid (5.49 mg/g) and protein content (12.81 mg/g), with lower quantities of phytic acid (1.04 mg/g) and reducing sugar (2.28 mg/g). The weakly acidic DES (ChCl-glycerol; pH 4.72) exhibited predominantly total phenolics (3.46 mg/g) with lower content of protein (6.22 mg/g), reducing sugar (1.68 mg/g) and phytic acid (0.20 mg/g). The weakly alkaline DES (ChCl-urea; pH 8.41) resulted in lower extraction yields for total phenolics (2.81 mg/g), protein (7.45 mg/g), phytic acid (0.10 mg/g), and reducing sugar (7.36 mg/g). The study also explored the distribution of phenolics among various DESs, with the alkaline DES (K2CO3-glycerol) containing the highest concentration of free phenolics. Notably, ChCl-based DESs predominantly contained soluble esterified bound phenolics and soluble glycosylated bound phenolics. Furthermore, a significant correlation between antioxidant activities and phenolic contents was observed. In conclusion, this study has revealed that the acidity and alkalinity of a DES significantly impact the extraction of phenolics and other value-added biomolecules in DFRB. These findings highlight the potential for manipulating the properties of DESs through pH variation, making them versatile solvents for extracting and isolating valuable compounds from agricultural by-products like DFRB and offering opportunities for sustainable utilization and value addition in various industries.

Funder

King Mongkut’s University of Technology Thonburi through funding for the KMUTT Research Center of Excellence Project to Lipid Technology Research Group

KMUTT Postdoctoral Fellowship to Piraporn Sombutsuwan

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3