Authentication of Jarrah (Eucalyptus marginata) honey through its nectar signature and assessment of its typical physicochemical characteristics

Author:

Islam Md Khairul12,Barbour Elizabeth23,Locher Cornelia12

Affiliation:

1. Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, Western Australia, Australia

2. CRC for Honey Bee Products, Yanchep, Western Australia, Australia

3. School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia

Abstract

Jarrah (Eucalyptus marginata) is a dominant forest tree endemic to the southwest of Western Australia. Its honey is appreciated for its highly desirable taste, golden colour, slow crystallisation, and high levels of bioactivity, which have placed Jarrah in the premium product range. However, whilst customers are willing to pay a high price for this natural product, there is currently no standard method for its authentication. As honey is naturally sourced from flower nectar, a novel route of authentication is to identify the nectar signature within the honey. This study reports on a high-performance thin layer chromatography (HPTLC)-based authentication system which allows the tracing of six key marker compounds present in Jarrah flower nectar and Jarrah honey. Four of these markers have been confirmed to be epigallocatechin, lumichrome, taxifolin and o-anisic acid with two (Rf 0.22 and 0.41) still chemically unidentified. To assist with the characterisation of Jarrah honey, a range of physicochemical tests following Codex Alimentarius guidelines were carried out. A blend of authenticated Jarrah honey samples was used to define the properties of this honey type. The blend was found to have a pH of 4.95, an electric conductivity of 1.31 mS/cm and a moisture content of 16.8%. Its water-insoluble content was 0.04%, its free acidity 19 milli-equivalents acid/kg and its diastase content 13.2 (DN). It also contains fructose (42.5%), glucose (20.8%), maltose (1.9%) and sucrose (<0.5%). The HPTLC-based authentication system proposed in this study has been demonstrated to be a useful tool for identifying Jarrah honey and might also act as a template for the authentication of other honey types.

Publisher

PeerJ

Reference55 articles.

1. Comparison of physicochemical properties of bee pollen with other bee products;Adaškevičiūte;Biomolecules,2019

2. The ecological significance of toxic nectar;Adler;Oikos,2003

3. Hydroxymethylfurfuraldehyde and amylase contents in Australian honey;Ajlouni;Food Chemistry,2010

4. Standard for honey CXS 12-1981;Alimentarius,2017

5. Floral nectar sugar constituents in relation to pollinator type;Baker,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3