Rodents’ responses to manipulated plant litter and seed densities: implications for restoration

Author:

Nicolai Nancy

Abstract

Rodent populations in arid grasslands do not always track seed production, possibly due to high levels of plant litter. When natural disturbances are suppressed, litter accumulates becoming physically complex, causing rodents to harvest fewer seeds per equivalent time foraging. It also alters security from predation. Restoring natural disturbances may be an important element in conserving rodent communities. The aim of this study was to assess the influence of two levels of plant litter cover and seed densities on nocturnal rodent population characteristics in a semiarid grassland. Specifically, I hypothesized that kangaroo rats, pocket mice, grasshopper mice, and total rodents would be higher in the sparse plant litter treatment than dense litter, whereas deer mice would be lower in sparse plots. I further hypothesized that kangaroo rats and deer mice would be higher in the seed augmented treatment compared to the unseeded treatment. A prescribed fire removed litter in four of eight plots prior to sowing native seeds 1 year postfire into two burned and two unburned plots. Rodents were live-trapped during spring and fall 1 year. Sparse litter treatment had higher total rodent abundance, biomass, and frequency of offspring compared to dense plots indicating use of stored seeds. Banner-tailed kangaroo rats had higher abundance, implying reduced predation risk. Pocket mice body mass was greater in dense plots. After winter, seeded plots had higher kangaroo rat body mass and grasshopper mice abundance than unseeded, reflecting the use of stored seeds. These short term results demonstrate litter’s physical complexity may be equivalent to seed pulses on the responses of nocturnal rodents. Managers might positively influence grassland rodents by providing a mosaic of varying levels of plant litter.

Funder

Sevilleta National Wildlife Refuge

Art Nicolai Trust

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3