Searching for a signature involving 10 genes to predict the survival of patients with acute myelocytic leukemia through a combined multi-omics analysis

Author:

Zhuang Haifeng1,Chen Yu2,Sheng Xianfu1,Hong Lili1,Gao Ruilan1,Zhuang Xiaofen3

Affiliation:

1. The First Affiliated Hospital of Zhejiang Chinese Medical University, Hang Zhou, China

2. Hangzhou Medical College, Hang Zhou, China

3. Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hang Zhou, China

Abstract

Background Currently, acute myelocytic leukemia (AML) still has a poor prognosis. As a result, gene markers for predicting AML prognosis must be identified through systemic analysis of multi-omics data. Methods First of all, the copy number variation (CNV), mutation, RNA-Seq, and single nucleotide polymorphism (SNP) data, as well as those clinical follow-up data, were obtained based on The Cancer Genome Atlas (TCGA) database. Thereafter, all samples (n = 229) were randomized as test set and training set, respectively. Of them, the training set was used to screen for genes related to prognosis, and genes with mutation, SNP or CNV. Then, shrinkage estimate was used for feature selection of all the as-screened genes, to select those stable biomarkers. Eventually, a prognosis model related to those genes was established, and validated within the GEO verification (n = 124 and 72) and test set (n = 127). Moreover, it was compared with the AML prognosis prediction model reported in literature. Results Altogether 832 genes related to prognosis, 23 related to copy amplification, 774 associated with copy deletion, and 189 with significant genomic variations were acquired in this study. Later, genes with genomic variations and those related to prognosis were integrated to obtain 38 candidate genes; eventually, a shrinkage estimate was adopted to obtain 10 feature genes (including FAT2, CAMK2A, TCERG1, GDF9, PTGIS, DOC2B, DNTTIP1, PREX1, CRISPLD1 and C22orf42). Further, a signature was established using these 10 genes based on Cox regression analysis, and it served as an independent factor to predict AML prognosis. More importantly, it was able to stratify those external verification, test and training set samples with regard to the risk (P < 0.01). Compared with the prognosis prediction model reported in literature, the model established in this study was advantageous in terms of the prediction performance. Conclusion The signature based on 10 genes had been established in this study, which is promising to be used to be a new marker for predicting AML prognosis.

Funder

Natural Science Foundation of Zhejiang Province

Zhejiang Provincial Medical and Health Science and Technology Project

Foundation of Zhejiang province Chinese medicine science and technology planes

Key project of the 2017 school research fund of Zhejiang Chinese Medical University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3