Quantifying local ecological knowledge to model historical abundance of long-lived, heavily-exploited fauna

Author:

Early-Capistrán Michelle-María1ORCID,Solana-Arellano Elena2,Abreu-Grobois F. Alberto3,Narchi Nemer E.4ORCID,Garibay-Melo Gerardo5,Seminoff Jeffrey A.6,Koch Volker7,Saenz-Arroyo Andrea8

Affiliation:

1. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico

2. Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico

3. Instituto de Ciencias del Mar y Limnología – Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, Mexico

4. CoLaboratorio de Oceanografía Social/Centro de Estudios de Geografía Humana, El Colegio de Michoacán - Sede La Piedad, La Piedad, Michoacán, Mexico

5. Posgrado en Manejo de Ecosistemas de Zonas Áridas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico

6. NOAA – Southwest Fisheries Science Center, La Jolla, CA, USA

7. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn, Germany, Bonn, Germany

8. Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR), San Cristobal de las Casas, Chiapas, Mexico

Abstract

Deriving robust historical population trends for long-lived species subject to human exploitation is challenging in scenarios where long-term scientific data are scarce or unavailable, as often occurs for species affected by small-scale fisheries and subsistence hunting. The importance of Local Ecological Knowledge (LEK) in data-poor scenarios is increasingly recognized in conservation, both in terms of uncovering historical trends and for engaging community stewardship of historic information. Building on previous work in marine historical ecology and local ecological knowledge, we propose a mixed socio-ecological framework to reliably document and quantify LEK to reconstruct historical population trends. Our method can be adapted by interdisciplinary teams to study various long-lived taxa with a history of human use. We demonstrate the validity of our approach by reconstructing long-term abundance data for the heavily-exploited East Pacific green turtle (Chelonia mydas) in Baja California, Mexico, which was driven to near extinction by a largely unregulated fishery from the early 1950s to the 1980s. No scientific baseline abundance data were available for this time-frame because recent biological surveys started in 1995 after all green turtle fisheries in the area were closed. To fill this data gap, we documented LEK among local fishers using ethnographic methods and obtained verified, qualitative data to understand the socio-environmental complexity of the green turtle fishery. We then established an iterative framework to synthesize and quantify LEK using generalized linear models (GLMs) and nonlinear regression (NLR) to generate a standardized, LEK-derived catch-per-unit-effort (CPUE) time-series. CPUE is an index of abundance that is compatible with contemporary scientific survey data. We confirmed the accuracy of LEK-derived CPUE estimates via comparisons with fisheries statistics available for 1962–1982. We then modeled LEK-derived abundance trends prior to 1995 using NLR. Our model established baseline abundance and described historical declines, revealing that the most critical (exponential) decline occurred between 1960 and 1980. This robust integration of LEK data with ecological science is of critical value for conservation and management, as it contributes to a holistic view of a species’ historic and contemporary conservation status.

Funder

Mexican National Council for Science and Technology-CONACYT

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3