CeRNA network analysis and functional enrichment of salt sensitivity of blood pressure by weighted-gene co-expression analysis

Author:

Cao Han1,Qi Han2,Liu Zheng3,Peng Wen-Juan1,Guo Chun-Yue1,Sun Yan-Yan1,Pao Christine4,Xiang Yu-Tao5,Zhang Ling1

Affiliation:

1. Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China

2. The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China

3. Science Department, Peking University People’s Hospital, Beijing, China

4. Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America

5. Unit of Psychiatry, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China

Abstract

Background Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. The pathogenic mechanisms of SSBP are still uncertain. This study aimed to construct the co-regulatory network of SSBP and data mining strategy based on the competitive endogenous RNA (ceRNA) theory. Methods LncRNA and mRNA microarray was performed to screen for candidate RNAs. Four criteria were used to select the potential differently expressed RNAs. The weighted correlation network analysis (WGCNA) package of R software and target miRNA and mRNA prediction online databases were used to construct the ceRNA co-regulatory network and discover the pathways related to SSBP. Gene ontology enrichment, gene set enrichment analysis (GSEA) and KEGG pathway analysis were performed to explore the functions of hub genes in networks. Results There were 274 lncRNAs and 36 mRNAs that differently expressed between salt-sensitive and salt-resistant groups (P < 0.05). Using WGCNA analysis, two modules were identified (blue and turquoise). The blue module had a positive relationship with salt-sensitivity (R = 0.7, P < 0.01), high-density lipoprotein (HDL) (R = 0.53, P = 0.02), and total cholesterol (TC) (R = 0.55, P = 0.01). The turquoise module was positively related with triglyceride (TG) (R = 0.8, P < 0.01) and low-density lipoprotein (LDL) (R = 0.54, P = 0.01). Furthermore, 84 ceRNA loops were identified and one loop may be of great importance for involving in pathogenesis of SSBP. KEGG analysis showed that differently expressed mRNAs were mostly enriched in the SSBP-related pathways. However, the enrichment results of GSEA were mainly focused on basic physical metabolic processes. Conclusion The microarray data mining process based on WGCNA co-expression analysis had identified 84 ceRNA loops that closely related with known SSBP pathogenesis. The results of our study provide implications for further understanding of the pathogenesis of SSBP and facilitate the precise diagnosis and therapeutics.

Funder

National Key Research and Development Program of China

Beijing Natural Science Foundation

Natural Science Foundation of China

Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3