Improvement of subsoil physicochemical and microbial properties by short-term fallow practices

Author:

Li Guangyu12,de Vries Walter Timo2,Wu Cifang1,Zheng Hongyu34

Affiliation:

1. School of Public Affairs, Zhejiang University, Hangzhou, China

2. Department of Civil, Geo and Environmental Engineering, Technische Universität München, München, Germany

3. School of Politics and Public Administration, Soochow University, Suzhou, Jiangsu, China

4. Collaborative Innovation Center for New-type Urbanization and Social Governance, Soochow University, Suzhou, Jiangsu, China

Abstract

Fallow management can improve the soil nutrients in the topsoil and upper subsoil. However, little is known about the effects of short-term (one year) fallowing with different treatments, such as vegetation and fertilization, on subsoil (20–40 cm) properties. We conducted field trials to explore the changes in subsoil properties in response to such treatments in the Yellow River Delta region in China. Different vegetation and fertilization treatments were applied, and we measured the carbon and nitrogen contents, microbial biomass and microbial community structure in the subsoil. Fallowing without manure resulted in the storage of more total nitrogen (16.38%) than fallowing with manure, and meadow vegetation improved the ammonium nitrogen content (45.71%) relative to spontaneous vegetation. Spontaneous vegetation with manure improved the microbial biomass nitrogen (P < 0.05). Although the impact of short-term fallowing on microbial community structure was low, an effect of management was observed for some genera. Blastopirellula, Lysobacter, and Acidobacteria Gp6 showed significant differences among fallow treatments by the end of the year (P < 0.05). Blastopirellula abundance was related to the microbial biomass nitrogen and nitrogen mineralization rate in the subsoil. Manure retained a high abundance of Lysobacter, which may strengthen soil-borne disease resistance. The response of Acidobacteria Gp6 showed that meadow vegetation without manure may not benefit future crops. Although the treatments did not significantly improve microbial community structure in the one-year period, annual fallowing improved certain subsoil properties and increased the number of functional genera, which may enhance crop productivity in the future.

Funder

Major Program of the National Social Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3