Non-visual exploration of novel objects increases the levels of plasticity factors in the rat primary visual cortex

Author:

Pereira Catia M.1,Freire Marco Aurelio M.2,Santos José R.3,Guimarães Joanilson S.4,Dias-Florencio Gabriella5,Santos Sharlene5,Pereira Antonio6,Ribeiro Sidarta5

Affiliation:

1. Instituto Internacional de Neurociências de Natal Edmond e Lily Safra, Macaiba, RN, Brasil

2. Programa de Pós-graduação em Saúde e Sociedade, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brasil

3. Departamento de Biociências, Universidade Federal de Sergipe, Itabaiana, SE, Brasil

4. Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil

5. Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil

6. Faculdade de Engenharia Elétrica, Universidade Federal do Pará, Belém, PA, Brasil

Abstract

Background Historically, the primary sensory areas of the cerebral cortex have been exclusively associated with the processing of a single sensory modality. Yet the presence of tactile responses in the primary visual (V1) cortex has challenged this view, leading to the notion that primary sensory areas engage in cross-modal processing, and that the associated circuitry is modifiable by such activity. To explore this notion, here we assessed whether the exploration of novel objects in the dark induces the activation of plasticity markers in the V1 cortex of rats. Methods Adult rats were allowed to freely explore for 20 min a completely dark box with four novel objects of different shapes and textures. Animals were euthanized either 1 (n = 5) or 3 h (n = 5) after exploration. A control group (n = 5) was placed for 20 min in the same environment, but without the objects. Frontal sections of the brains were submitted to immunohistochemistry to measure protein levels of egr-1 and c-fos, and phosphorylated calcium-dependent kinase (pCaKMII) in V1 cortex. Results The amount of neurons labeled with monoclonal antibodies against c-fos, egr-1 or pCaKMII increased significantly in V1 cortex after one hour of exploration in the dark. Three hours after exploration, the number of labeled neurons decreased to basal levels. Conclusions Our results suggest that non-visual exploration induces the activation of immediate-early genes in V1 cortex, which is suggestive of cross-modal processing in this area. Besides, the increase in the number of neurons labeled with pCaKMII may signal a condition promoting synaptic plasticity.

Funder

Pew Latin-American Program in Biomedical Science

INCT-CNPq/MCT INCEMAQ

CNPq Universal

CAPES/SECYT

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3