Constructing a comprehensive gene co-expression based interactome in Bos taurus

Author:

Chen Yan1,Liu Yining2,Du Min3,Zhang Wengang1,Xu Ling1,Gao Xue1,Zhang Lupei1,Gao Huijiang1,Xu Lingyang1,Li Junya1,Zhao Min4

Affiliation:

1. Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China

2. The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China

3. Department of Animal Science, Washington State University, Pullman, WA, United States of America

4. School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia

Abstract

Integrating genomic information into cattle breeding is an important approach to exploring genotype-phenotype relationships for complex traits related to diary and meat production. To assist with genomic-based selection, a reference map of interactome is needed to fully understand and identify the functional relevant genes. To this end, we constructed a co-expression analysis of 92 tissues and this represents the systematic exploration of gene-gene relationship in Bos taurus. By using robust WGCNA (Weighted Gene Correlation Network Analysis), we described the gene co-expression network of 5,000 protein-coding genes with majority variations in expression across 92 tissues. Further module identifications found 55 highly organized functional clusters representing diverse cellular activities. To demonstrate the re-use of our interaction for functional genomics analysis, we extracted a sub-network associated with DNA binding genes in Bos taurus. The subnetwork was enriched within regulation of transcription from RNA polymerase II promoter representing central cellular functions. In addition, we identified 28 novel linker genes associated with more than 100 DNA binding genes. Our WGCNA-based co-expression network reconstruction will be a valuable resource for exploring the molecular mechanisms of incompletely characterized proteins and for elucidating larger-scale patterns of functional modulization in the Bos taurus genome.

Funder

National Natural Science Foundation of China

Chinese Academy of Agricultural Sciences

China’s Agriculture and Finance Ministries

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3