The 1.06 frequency ratio in the cochlea: evidence and outlook for a natural musical semitone

Author:

Bell Andrew1,Jedrzejczak W. Wiktor23

Affiliation:

1. John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia

2. Institute of Physiology and Pathology of Hearing, Warsaw, Poland

3. World Hearing Center, Kajetany, Poland

Abstract

A frequency ratio of about 1.06 often appears in cochlear mechanics, and the question naturally arises, why? The ratio is close to that of the semitone (1.059) in music, giving reason to think that this aspect of musical perception might have a cochlear basis. Here, data on synchronised spontaneous otoacoustic emissions is presented, and a clustering of ratios between 1.05 and 1.07 is found with a peak at 1.063 ± 0.005. These findings reinforce what has been found from previous sources, which are reviewed and placed alongside the present work. The review establishes that a peak in the vicinity of 1.06 has often been found in human cochlear data. Several possible cochlear models for explaining the findings are described. Irrespective of which model is selected, the fact remains that the cochlea itself appears to be the origin of a ratio remarkably close to an equal-tempered musical semitone, and this close coincidence leads to the suggestion that the inner ear may play a role in constructing a natural theory of music. The outlook for such an enterprise is surveyed.

Funder

Institute of Physiology and Pathology of Hearing, Warsaw

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference76 articles.

1. Circadian and menstrual rhythms of spontaneous otoacoustic emissions from human ears;Bell;Hearing Research,1992

2. Musical ratios in geometrical spacing of outer hair cells in the cochlea: strings of an underwater piano?;Bell,2002

3. Hearing: travelling wave or resonance?;Bell;PLOS Biology,2004

4. The underwater piano: a resonance theory of cochlear mechanics;Bell;PhD thesis,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3