Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks

Author:

Bwatanglang Ibrahim BirmaORCID,Magili Samuel T.,Kaigamma Iliya

Abstract

A bio-based Silica/Calcium Carbonate (CS–SiO2/CaCO3) nanocomposite was synthesized in this study using waste eggshells (ES) and rice husks (RH). The adsorbents (ESCaCO3, RHSiO2 and, CS-SiO2/CaCO3) characterized using XRD show crystallinity associated with the calcite and quartz phase. The FTIR of ESCaCO3 shows the CO−23 group of CaCO3, while the spectra of RHSiO2 majorly show the siloxane bonds (Si–O–Si) in addition to the asymmetric and symmetric bending mode of SiO2. The spectra for Chitosan (CS) show peaks corresponding to the C=O vibration mode of amides, C–N stretching, and C–O stretching. The CS–SiO2/CaCO3 nanocomposite shows the spectra pattern associated with ESCaCO3 and RHSiO2. The FESEM micrograph shows a near monodispersed and spherical CS–SiO2/CaCO3 nanocomposite morphology, with an average size distribution of 32.15 ± 6.20 nm. The corresponding EDX showed the representative peaks for Ca, C, Si, and O. The highest removal efficiency of phenol over the adsorbents was observed over CS–SiO2/CaCO3 nanocomposite compared to other adsorbents. Adsorbing 84–89% of phenol in 60–90 min at a pH of 5.4, and a dose of 0.15 g in 20 ml of 25 mg/L phenol concentration. The result of the kinetic model shows the adsorption processes to be best described by pseudo-second-order. The highest correlation coefficient (R2) of 0.99 was observed in CS-SiO2/CaCO3 nanocomposite, followed by RHSiO2 and ESCaCO3. The result shows the equilibrium data for all the adsorbents fitting well to the Langmuir isotherm model, and follow the trend CS-SiO2/CaCO3 > ESCaCO3 > RHSiO2. The Langmuir equation and Freundlich model in this study show a higher correlation coefficient (R2 = 0.9912 and 0.9905) for phenol adsorption onto the CS–SiO2/CaCO3 nanocomposite with a maximum adsorption capacity (qm ) of 14.06 mg/g compared to RHSiO2 (10.64 mg/g) and ESCaCO3 (10.33 mg/g). The results suggest good monolayer coverage on the adsorbent’s surface (Langmuir) and heterogeneous surfaces with available binding sites (Freundlich).

Funder

Research Tertiary Education Trust Fund, Nigeria

Publisher

PeerJ

Subject

General Medicine

Reference54 articles.

1. Equilibrium, kinetic and thermodynamic studies of simultaneous co-adsorptive removal of phenol and cyanide using chitosan;Agarwal;Life,2013

2. A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis;Ahmad;Arabian Journal of Chemistry,2020

3. Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water;Ali;Journal of Molecular Liquids,2016

4. Screening of combined zeolite-ozone system for phenol and COD removal;Amin;Chemical Engineering Journal,2010

5. Phenol removal from aqueous solution using silica and activated carbon derived from rice husk;Asgharnia;Water Practice & Technology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3