Variation in denitrifying bacterial communities along a primary succession in the Hailuogou Glacier retreat area, China

Author:

Bai Yan1,Huang Xiying1,Zhou Xiangrui1,Xiang Quanju1,Zhao Ke1,Yu Xiumei1,Chen Qiang1,Jiang Hao2,Nyima Tashi3,Gao Xue3,Gu Yunfu1

Affiliation:

1. Department of Microbiology/ College of Resources/Sichuan Agricultural University, Sichuan Agricultural University, Chengdu, Sichuan, China

2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China

3. Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China

Abstract

Background The Hailuogou Glacier is located at the Gongga Mountain on the southeastern edge of the Tibetan Plateau, and has retreated continuously as a result of global warming. The retreat of the Hailuogou Glacier has left behind a primary succession along soil chronosequences. Hailuogou Glacier’s retreated area provides an excellent living environment for the colonization of microbes and plants, making it an ideal model to explore plant successions, microbial communities, and the interaction of plants and microbes during the colonization process. However, to date, the density of the nitrogen cycling microbial communities remain unknown, especially for denitrifiers in the primary succession of the Hailuogou Glacier. Therefore, we investigated the structural succession and its driving factors for denitrifying bacterial communities during the four successional stages (0, 20, 40, and 60 years). Methods The diversity, community composition, and abundance of nosZ-denitrifiers were determined using molecular tools, including terminal restriction fragment length polymorphism and quantitative polymerase chain reactions (qPCR). Results nosZ-denitrifiers were more abundant and diverse in soils from successional years 20–60 compared to 0–5 years, and was highest in Site3 (40 years). The denitrifying bacterial community composition was more complex in older soils (40–60 years) than in younger soils (≤20 years). The terminal restriction fragments (T-RFs) of Azospirillum (90 bp) and Rubrivivax (95 bp) were dominant in soisl during early successional stages (0–20 years) and in the mature phase (40–60 years), respectively. Specific T-RFs of Bradyrhizobium (100 bp) and Pseudomonas (275 bp) were detected only in Site3 and Site4, respectively. Moreover, the unidentified 175 bp T-RFs was detected only in Site3. Of the abiotic factors that were measured in this study, soil available phosphorus, available potassium and denitrifying enzyme activity (DEA) correlated significantly with the community composition of nosZ-denitrifiers (P < 0.05 by Monte Carlo permutation test within RDA analysis).

Funder

Science and Technology Department of the Tibet and Sichuan Agricultural University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3