Association network analysis identifies enzymatic components of gut microbiota that significantly differ between colorectal cancer patients and healthy controls

Author:

Ai Dongmei12,Pan Hongfei2,Li Xiaoxin2,Wu Min2,Xia Li C.3ORCID

Affiliation:

1. Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing, China

2. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China

3. Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA

Abstract

The human gut microbiota plays a major role in maintaining human health and was recently recognized as a promising target for disease prevention and treatment. Many diseases are traceable to microbiota dysbiosis, implicating altered gut microbial ecosystems, or, in many cases, disrupted microbial enzymes carrying out essential physio-biochemical reactions. Thus, the changes of essential microbial enzyme levels may predict human disorders. With the rapid development of high-throughput sequencing technologies, metagenomics analysis has emerged as an important method to explore the microbial communities in the human body, as well as their functionalities. In this study, we analyzed 156 gut metagenomics samples from patients with colorectal cancer (CRC) and adenoma, as well as that from healthy controls. We estimated the abundance of microbial enzymes using the HMP Unified Metabolic Analysis Network method and identified the differentially abundant enzymes between CRCs and controls. We constructed enzymatic association networks using the extended local similarity analysis algorithm. We identified CRC-associated enzymic changes by analyzing the topological features of the enzymatic association networks, including the clustering coefficient, the betweenness centrality, and the closeness centrality of network nodes. The network topology of enzymatic association network exhibited a difference between the healthy and the CRC environments. The ABC (ATP binding cassette) transporter and small subunit ribosomal protein S19 enzymes, had the highest clustering coefficient in the healthy enzymatic networks. In contrast, the Adenosylhomocysteinase enzyme had the highest clustering coefficient in the CRC enzymatic networks. These enzymic and metabolic differences may serve as risk predictors for CRCs and are worthy of further research.

Funder

National Natural Science Foundation of China

Innovation in Cancer Informatics Fund

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3