Monitoring cyanobacterial toxins in a large reservoir: relationships with water quality parameters

Author:

Subbiah Seenivasan,Karnjanapiboonwong Adcharee,Maul Jonathan D.,Wang Degeng,Anderson Todd A.

Abstract

Cyanobacteria are widely distributed in fresh, brackish, and ocean water environments, as well as in soil and on moist surfaces. Changes in the population of cyanobacteria can be an important indicator of alterations in water quality. Metabolites produced by blooms of cyanobacteria can be harmful, so cell counts are frequently monitored to assess the potential risk from cyanobacterial toxins. A frequent uncertainty in these types of assessments is the lack of strong relationships between cell count numbers and algal toxin concentrations. In an effort to use ion concentrations and other water quality parameters to determine the existence of any relationships with cyanobacterial toxin concentrations, we monitored four cyanobacterial toxins and inorganic ions in monthly water samples from a large reservoir over a 2-year period. Toxin concentrations during the study period never exceeded safety limits. In addition, toxin concentrations at levels above the limit of quantitation were infrequent during the 2-year sampling period; non-detects were common. Microcystin-LA was the least frequently detected analyte (86 of 89 samples were ND), followed by the other microcystins (microcystin-RR, microcystin-LR). Cylindrospermopsin and saxitoxin were the most frequently detected analytes. Microcystin and anatoxin concentrations were inversely correlated with Cl, SO${}_{4}^{-2}$, Na+, and NH${}_{4}^{+}$, and directly correlated with turbidity and total P. Cylindrospermopsin and saxitoxin concentrations in water samples were inversely correlated with Mg+2 and directly correlated with water temperature. Results of our study are expected to increase the understanding of potential relationships between human activities and water quality.

Funder

Grayson County (Texas) Health Department

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3