Preliminary studies of selected Lemna species on the oxygen production potential in relation to some ecological factors

Author:

Sender Joanna1,Różańska-Boczula Monika2

Affiliation:

1. Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Lublin, Poland

2. Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Lublin, Poland

Abstract

Dissolved oxygen is fundamental for chemical and biochemical processes occurring in natural waters and critical for the life of aquatic organisms. Many organisms are responsible for altering organic matter and oxygen transfers across ecosystem or habitat boundaries and, thus, engineering the oxygen balance of the system. Due to such Lemna features as small size, simple structure, vegetative reproduction and rapid growth, as well as frequent mass occurrence in the form of thick mats, they make them very effective in oxygenating water. The research was undertaken to assess the impact of various species of duckweed (L. minor and L. trisulca) on dissolved oxygen content and detritus production in water and the role of ecological factors (light, atmospheric pressure, conductivity, and temperature) in this process. For this purpose, experiments were carried out with combinations of L. minor and L. trisulca. On this basis, the content of oxygen dissolved in water was determined depending on the growth of duckweed. Linear regression models were developed to assess the dynamics of changes in oxygen content and, consequently, organic matter produced by the Lemna. The research showed that the presence of L. trisulca causes an increase in dissolved oxygen content in water. It was also shown that an increase in atmospheric pressure had a positive effect on the ability of duckweed to produce oxygen, regardless of its type. The negative correlation between conductivity and water oxygenation, obtained in conditions of limited light access, allows us to assume that higher water conductivity limits oxygen production by all combinations of duckweeds when the light supply is low. Based on the developed models, it was shown that the highest increase in organic matter would be observed in the case of mixed duckweed and the lowest in the presence of the L. minor species, regardless of light conditions. Moreover, it was shown that pleustophytes have different heat capacities, and L. trisulca has the highest ability to accumulate heat in water for the tested duckweed combinations. The provided knowledge may help determine the good habitat conditions of duckweed, indicating its role in purifying water reservoirs as an effect of producing organic matter and shaping oxygen conditions with the participation of various Lemna species.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3