Wood identification based on macroscopic images using deep and transfer learning approaches

Author:

Ergun HalimeORCID

Abstract

Identifying forest types is vital for evaluating the ecological, economic, and social benefits provided by forests, and for protecting, managing, and sustaining them. Although traditionally based on expert observation, recent developments have increased the use of technologies such as artificial intelligence (AI). The use of advanced methods such as deep learning will make forest species recognition faster and easier. In this study, the deep network models RestNet18, GoogLeNet, VGG19, Inceptionv3, MobileNetv2, DenseNet201, InceptionResNetv2, EfficientNet and ShuffleNet, which were pre-trained with ImageNet dataset, were adapted to a new dataset. In this adaptation, transfer learning method is used. These models have different architectures that allow a wide range of performance evaluation. The performance of the model was evaluated by accuracy, recall, precision, F1-score, specificity and Matthews correlation coefficient. ShuffleNet was proposed as a lightweight network model that achieves high performance with low computational power and resource requirements. This model was an efficient model with an accuracy close to other models with customisation. This study reveals that deep network models are an effective tool in the field of forest species recognition. This study makes an important contribution to the conservation and management of forests.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3