The influence of stand composition and season on canopy structure and understory light environment in different subtropical montane Pinus massoniana forests

Author:

Jin Peng,Xu Ming,Yang Qiupu,Zhang Jian

Abstract

Canopy structure and understory light have important effects on forest productivity and the growth and distribution of the understory. However, the effects of stand composition and season on canopy structure and understory light environment (ULE) in the subtropical mountain Pinus massoniana forest system are poorly understood. In this study, the natural secondary P. massonianaCastanopsis eyrei mixed forest (MF) and P. massoniana plantation forest (PF) were investigated. The study utilized Gap Light Analyzer 2.0 software to process photographs, extracting two key canopy parameters, canopy openness (CO) and leaf area index (LAI). Additionally, data on the transmitted direct (Tdir), diffuse (Tdif), and total (Ttot) radiation in the light environment were obtained. Seasonal variations in canopy structure, the ULE, and spatial heterogeneity were analyzed in the two P. massoniana forest stands. The results showed highly significant (P < 0.01) differences in canopy structure and ULE indices among different P. massoniana forest types and seasons. CO and ULE indices (Tdir, Tdif, and Ttot) were significantly lower in the MF than in the PF, while LAI was notably higher in the MF than in the PF. CO was lower in summer than in winter, and both LAI and ULE indices were markedly higher in summer than in winter. In addition, canopy structure and ULE indices varied significantly among different types of P. massoniana stands. The LAI heterogeneity was lower in the MF than in the PF, and Tdir heterogeneity was higher in summer than in winter. Meanwhile, canopy structure and ULE indices were predominantly influenced by structural factors, with spatial correlations at the 10 m scale. Our results revealed that forest type and season were important factors affecting canopy structure, ULE characteristics, and heterogeneity of P. massoniana forests in subtropical mountains.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3