Innovative infrastructure to access Brazilian fungal diversity using deep learning

Author:

Chaves Thiago1ORCID,Santos Xavier Joicymara2ORCID,Gonçalves dos Santos Alfeu1,Martins-Cunha Kelmer3ORCID,Karstedt Fernanda3,Kossmann Thiago3,Sourell Susanne3,Leopoldo Eloisa3ORCID,Fortuna Ferreira Miriam Nathalie1,Farias Roger1,Titton Mahatmã3ORCID,Alves-Silva Genivaldo3ORCID,Bittencourt Felipe3,Bortolini Dener4,Gumboski Emerson L.5ORCID,von Wangenheim Aldo1ORCID,Góes-Neto Aristóteles4ORCID,Drechsler-Santos Elisandro Ricardo3

Affiliation:

1. Brazilian National Institute for Digital Convergence—INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

2. Institute of Agricultural Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Minas Gerais, Brazil

3. MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

4. Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil

5. Department of Biological Sciences, Regional University of Joinville (UNIVILLE), Joinville, Santa Catarina, Brazil

Abstract

In the present investigation, we employ a novel and meticulously structured database assembled by experts, encompassing macrofungi field-collected in Brazil, featuring upwards of 13,894 photographs representing 505 distinct species. The purpose of utilizing this database is twofold: firstly, to furnish training and validation for convolutional neural networks (CNNs) with the capacity for autonomous identification of macrofungal species; secondly, to develop a sophisticated mobile application replete with an advanced user interface. This interface is specifically crafted to acquire images, and, utilizing the image recognition capabilities afforded by the trained CNN, proffer potential identifications for the macrofungal species depicted therein. Such technological advancements democratize access to the Brazilian Funga, thereby enhancing public engagement and knowledge dissemination, and also facilitating contributions from the populace to the expanding body of knowledge concerning the conservation of macrofungal species of Brazil.

Funder

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento Pessoal de Nível Superior

Mohamed bin Zayed Species Conservation Fund

Publisher

PeerJ

Reference53 articles.

1. State of the world’s plants and fungi;Antonelli,2020

2. Experience in local urban wildlife research enhances a conservation education programme with school children;Awasthy;Pacific Conservation Biology,2012

3. Species determination using AI machine-learning algorithms: Hebeloma as a case study;Bartlett;IMA Fungus,2022

4. Children in nature: sensory engagement and the experience of biodiversity;Beery;Environmental Education Research,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3