Double jeopardy: global change and interspecies competition threaten Siberian cranes

Author:

Gao Linqiang1,Mi Chunrong12

Affiliation:

1. Institute of Zoology, Chinese Academy of Science, Beijing, China

2. Princeton School of Public and International Affairs, Princeton University, Princeton, New Jercey, United States

Abstract

Anthropogenic global change is precipitating a worldwide biodiversity crisis, with myriad species teetering on the brink of extinction. The Arctic, a fragile ecosystem already on the frontline of global change, bears witness to rapid ecological transformations catalyzed by escalating temperatures. In this context, we explore the ramifications of global change and interspecies competition on two arctic crane species: the critically endangered Siberian crane (Leucogeranus leucogeranus) and the non-threatened sandhill crane (Grus canadensis). How might global climate and landcover changes affect the range dynamics of Siberian cranes and sandhill cranes in the Arctic, potentially leading to increased competition and posing a greater threat to the critically endangered Siberian cranes? To answer these questions, we integrated ensemble species distribution models (SDMs) to predict breeding distributions, considering both abiotic and biotic factors. Our results reveal a profound divergence in how global change impacts these crane species. Siberian cranes are poised to lose a significant portion of their habitats, while sandhill cranes are projected to experience substantial range expansion. Furthermore, we identify a growing overlap in breeding areas, intensifying interspecies competition, which may imperil the Siberian crane. Notably, we found the Anzhu Islands may become a Siberian crane refuge under global change, but competition with Sandhill Cranes underscores the need for enhanced conservation management. Our study underscores the urgency of considering species responses to global changes and interspecies dynamics in risk assessments and conservation management. As anthropogenic pressures continue to mount, such considerations are crucial for the preservation of endangered species in the face of impending global challenges.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3