Machine learning approaches to debris flow susceptibility analyses in the Yunnan section of the Nujiang River Basin

Author:

Zhou Jingyi1,Huang Jiangcheng2,Sun Zhengbao3,Yi Qi1,He Aoyang2ORCID

Affiliation:

1. School of Earth Sciences, Yunnan University, Kunming, China

2. Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China

3. School of Engineering, Yunnan University, Kunming, China

Abstract

Background The Yunnan section of the Nujiang River (YNR) Basin in the alpine-valley area is one of the most critical areas of debris flow in China. Methods We analyzed the applicability of three machine learning algorithms to model of susceptibility to debris flow—Random Forest (RF), the linear kernel support vector machine (Linear SVM), and the radial basis function support vector machine (RBFSVM)—and compared 20 factors to determine the dominant controlling in debris flow occurrence in the region. Results We found that (1) RF outperformed RBFSVM and Linear SVM in terms of accuracy, (2) topographic conditions were prerequisites, and geology, precipitation, vegetation, and anthropogenic influence were critical to forming debris flows. Also, the relative elevation difference was the most prominent evaluation factor of debris flow susceptibility, and (3) susceptibility maps based on RF’s debris flow susceptibility (DFS) showed that zones with very high susceptibility were distributed along the mainstream of the Nujiang River. These findings provide methodological guidance and reference for improvement of DFS assessment. It enriches the content of DFS studies in the alpine-valley areas.

Funder

National Natural Science Foundation of China

Yunnan

Yunnan University

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3