A retrospective prognostic evaluation using unsupervised learning in the treatment of COVID-19 patients with hypertension treated with ACEI/ARB drugs

Author:

Ge Liye1,Meng Yongjun1,Ma Weina1,Mu Junyu2

Affiliation:

1. Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China

2. Nanjing Medical University, Nanjing, China

Abstract

Introduction This study aimed to evaluate the prognosis of patients with COVID-19 and hypertension who were treated with angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor B (ARB) drugs and to identify key features affecting patient prognosis using an unsupervised learning method. Methods A large-scale clinical dataset, including patient information, medical history, and laboratory test results, was collected. Two hundred patients with COVID-19 and hypertension were included. After cluster analysis, patients were divided into good and poor prognosis groups. The unsupervised learning method was used to evaluate clinical characteristics and prognosis, and patients were divided into different prognosis groups. The improved wild dog optimization algorithm (IDOA) was used for feature selection and cluster analysis, followed by the IDOA-k-means algorithm. The impact of ACEI/ARB drugs on patient prognosis and key characteristics affecting patient prognosis were also analysed. Results Key features related to prognosis included baseline information and laboratory test results, while clinical symptoms and imaging results had low predictive power. The top six important features were age, hypertension grade, MuLBSTA, ACEI/ARB, NT-proBNP, and high-sensitivity troponin I. These features were consistent with the results of the unsupervised prediction model. A visualization system was developed based on these key features. Conclusion Using unsupervised learning and the improved k-means algorithm, this study accurately analysed the prognosis of patients with COVID-19 and hypertension. The use of ACEI/ARB drugs was found to be a protective factor for poor clinical prognosis. Unsupervised learning methods can be used to differentiate patient populations and assess treatment effects. This study identified important features affecting patient prognosis and developed a visualization system with clinical significance for prognosis assessment and treatment decision-making.

Funder

Shanghai Key Specialty Project of Clinical Pharmacy

Nature Science Foundation of Jiading District, Shanghai

Shanghai University of Medicine and Health Sciences Clinical Research Centre for Metabolic Vascular Diseases Project

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3