Microplastic from beach sediment to tissue: a case study on burrowing crab Dotilla blanfordi

Author:

Zala Hiralba1,Rabari Vasantkumar1ORCID,Patel Krupal1ORCID,Patel Heris1,Yadav Virendra Kumar1ORCID,Patel Ashish1,Sahoo Dipak Kumar2ORCID,Trivedi Jigneshkumar1

Affiliation:

1. Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India

2. Department of Veterinary Clinical Sciences, Iowa State University, Ames, Iowa, United States

Abstract

Background Microplastics (MPs) are pervasive pollutants in the marine environment, exhibiting persistence in coastal sediment over extended periods. However, the mechanism of their uptake by marine organisms and distribution in habitat is less understood. The objective of the present study was to investigate the presence of MP contamination in burrow sediment, feeding pellets, and tissue of Dotilla blanfordi in the Gulf of Kachchh, Gujarat State. Methods A total of 500 g of burrow sediment, 100 g of feeding pellets, and body tissue of 10 resident D. blanfordi were pooled as one replica. Such seven replicas from each site were analyzed for MP extraction from three sites, including Asharmata, Mandvi, and Serena, located in the Gulf of Kachchh. The standard protocol was used during the analysis of the collected samples in order to isolate MPs. Results The abundance of MP was found higher in burrow sediment, feeding pellets and tissue of D. blanfordi at study site Mandvi, followed by Serena and Asharmata. The abundance of MP was found higher in D. blanfordi tissue, followed by burrow sediment and feeding pellet. A significant variation was observed in MP abundance among burrow sediment, feeding pellets, and tissue. MPs with various shapes (fiber, film, and fragment), sizes (1–2, 2–3, 3–4, and 4–5 mm), and colors (blue, green, black, pink, purple, red transparent) were recorded from all the study sites. Polyurethane and polyvinyl chloride were recognized as the chemical profile of the extracted MPs. The current investigation revealed greater accumulation of MPs in D. blanfordi’s tissues compared to sediment and pellets, suggesting a risk of MP contamination in marine benthic fauna with a greater rate of bioaccumulation. D. blanfordi plays a significant role as a structuring agent for MP distribution in the intertidal flat through burrowing activity.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3