The effect of a spinal thrust manipulation’s audible pop on brain wave activity: a quasi-experimental repeated measure design

Author:

Sillevis Rob1,Unum Joshua1,Weiss Valerie1,Shamus Eric1,Selva-Sarzo Francisco2

Affiliation:

1. Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, FL, USA

2. Physiotherapy, Universitat de Valencia, Valencia, Spain

Abstract

Introduction High velocity thrust manipulation is commonly used when managing joint dysfunctions. Often, these thrust maneuvers will elicit an audible pop. It has been unclear what conclusively causes this audible sound and its clinical meaningfulness. This study sought to identify the effect of the audible pop on brainwave activity directly following a prone T7 thrust manipulation in asymptomatic/healthy subjects. Methods This was a quasi-experimental repeated measure study design in which 57 subjects completed the study protocol. Brain wave activity was measured with the Emotiv EPOC+, which collects data with a frequency of 128 HZ and has 14 electrodes. Testing was performed in a controlled environment with minimal electrical interference (as measured with a Gauss meter), temperature variance, lighting variance, sound pollution, and other variable changes that could have influenced or interfered with pure EEG data acquisition. After accommodation each subject underwent a prone T7 posterior-anterior thrust manipulation. Immediately after the thrust manipulation the brainwave activity was measured for 10 seconds. Results The non-audible group (N = 20) consisted of 55% males, and the audible group (N = 37) consisted of 43% males. The non-audible group EEG data revealed a significant change in brain wave activity under some of the electrodes in the frontal, parietal, and the occipital lobes. In the audible group, there was a significant change in brain wave activity under all electrodes in the frontal lobes, the parietal lobe, and the occipital lobes but not the temporal lobes. Conclusion The audible sounds caused by a thoracic high velocity thrust manipulation did not affect the activity in the audible centers in the temporal brain region. The results support the hypothesis that thrust manipulation with or without audible sound results in a generalized relaxation immediately following the manipulation. The absence of a significant difference in brainwave activity in the frontal lobe in this study might indicate that the audible pop does not produce a “placebo” mechanism.

Funder

The FPTA Linda Craft award

Publisher

PeerJ

Reference33 articles.

1. A user study of visualization effectiveness using EEG and cognitive load;Anderson,2011

2. Does an audible release improve the outcome of a chiropractic adjustment?;Bakker;The Journal of the Canadian Chiropractic Association,2004

3. The refractory period of the audible crack after lumbar manipulation: a preliminary study;Bereznick;Journal of Manipulative and Physiological Therapeutics,2008

4. Patient concerns and beliefs related to audible popping sound and the effectiveness of manipulation: findings from an online survey;Bergamino;Journal of Manipulative and Physiological Therapeutics,2022

5. The relationship of the audible pop to hypoalgesia associated with high-velocity, low-amplitude thrust manipulation: a secondary analysis of an experimental study in pain-free participants;Bialosky;Journal of Manipulative and Physiological Therapeutics,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3