Evaluation of a cadaveric wrist motion simulator using marker-based X-ray reconstruction of moving morphology

Author:

Glanville Joanna12,Bates Karl T.2,Brown Daniel3,Potts Daniel1,Curran John1,Fichera Sebastiano1

Affiliation:

1. School of Engineering, University of Liverpool, Liverpool, Merseyside, United Kingdom

2. Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, Merseyside, United Kingdom

3. Liverpool Orthopaedic and Trauma Service, Liverpool University Hospitals, Liverpool, Merseyside, United Kingdom

Abstract

Surgical intervention is a common option for the treatment of wrist joint arthritis and traumatic wrist injury. Whether this surgery is arthrodesis or a motion preserving procedure such as arthroplasty, wrist joint biomechanics are inevitably altered. To evaluate effects of surgery on parameters such as range of motion, efficiency and carpal kinematics, repeatable and controlled motion of cadaveric specimens is required. This study describes the development of a device that enables cadaveric wrist motion to be simulated before and after motion preserving surgery in a highly controlled manner. The simulator achieves joint motion through the application of predetermined displacements to the five major tendons of the wrist, and records tendon forces. A pilot experiment using six wrists aimed to evaluate its accuracy and reproducibility. Biplanar X-ray videoradiography (BPVR) and X-Ray Reconstruction of Moving Morphology (XROMM) were used to measure overall wrist angles before and after total wrist arthroplasty. The simulator was able to produce flexion, extension, radioulnar deviation, dart thrower’s motion and circumduction within previously reported functional ranges of motion. Pre- and post-surgical wrist angles did not significantly differ. Intra-specimen motion trials were repeatable; root mean square errors between individual trials and average wrist angle and tendon force profiles were below 1° and 2 N respectively. Inter-specimen variation was higher, likely due to anatomical variation and lack of wrist position feedback. In conclusion, combining repeatable intra-specimen cadaveric motion simulation with BPVR and XROMM can be used to determine potential effects of motion preserving surgeries on wrist range of motion and biomechanics.

Funder

The Engineering & Physical Sciences Research Council, Swemac

The University of Liverpool and Medical Research Council (MRC) and Versus Arthritis as part of the MRC Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3