Affiliation:
1. Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
2. Department of Thoracic Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
3. Department of Plastic Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
Abstract
Background
Adenocarcinoma, the most prevalent histological subtype of non-small cell lung cancer, is associated with a significantly higher likelihood of bone metastasis compared to other subtypes. The presence of bone metastasis has a profound adverse impact on patient prognosis. However, to date, there is a lack of accurate bone metastasis prediction models. As a result, this study aims to employ machine learning algorithms for predicting the risk of bone metastasis in patients.
Method
We collected a dataset comprising 19,454 cases of solitary, primary lung adenocarcinoma with pulmonary nodules measuring less than 3 cm. These cases were diagnosed between 2010 and 2015 and were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. Utilizing clinical feature indicators, we developed predictive models using seven machine learning algorithms, namely extreme gradient boosting (XGBoost), logistic regression (LR), light gradient boosting machine (LightGBM), Adaptive Boosting (AdaBoost), Gaussian Naive Bayes (GNB), multilayer perceptron (MLP) and support vector machine (SVM).
Results
The results demonstrated that XGBoost exhibited superior performance among the four algorithms (training set: AUC: 0.913; test set: AUC: 0.853). Furthermore, for convenient application, we created an online scoring system accessible at the following URL: https://www.xsmartanalysis.com/model/predict/?mid=731symbol=7Fr16wX56AR9Mk233917, which is based on the highest performing model.
Conclusion
XGBoost proves to be an effective algorithm for predicting the occurrence of bone metastasis in patients with solitary, primary lung adenocarcinoma featuring pulmonary nodules below 3 cm in size. Moreover, its robust clinical applicability enhances its potential utility.