Construction of a predictive model for bone metastasis from first primary lung adenocarcinoma within 3 cm based on machine learning algorithm: a retrospective study

Author:

Zhang Yu1,Xiao Lixia2,LYu Lan3,Zhang Liwei1

Affiliation:

1. Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China

2. Department of Thoracic Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China

3. Department of Plastic Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China

Abstract

Background Adenocarcinoma, the most prevalent histological subtype of non-small cell lung cancer, is associated with a significantly higher likelihood of bone metastasis compared to other subtypes. The presence of bone metastasis has a profound adverse impact on patient prognosis. However, to date, there is a lack of accurate bone metastasis prediction models. As a result, this study aims to employ machine learning algorithms for predicting the risk of bone metastasis in patients. Method We collected a dataset comprising 19,454 cases of solitary, primary lung adenocarcinoma with pulmonary nodules measuring less than 3 cm. These cases were diagnosed between 2010 and 2015 and were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. Utilizing clinical feature indicators, we developed predictive models using seven machine learning algorithms, namely extreme gradient boosting (XGBoost), logistic regression (LR), light gradient boosting machine (LightGBM), Adaptive Boosting (AdaBoost), Gaussian Naive Bayes (GNB), multilayer perceptron (MLP) and support vector machine (SVM). Results The results demonstrated that XGBoost exhibited superior performance among the four algorithms (training set: AUC: 0.913; test set: AUC: 0.853). Furthermore, for convenient application, we created an online scoring system accessible at the following URL: https://www.xsmartanalysis.com/model/predict/?mid=731symbol=7Fr16wX56AR9Mk233917, which is based on the highest performing model. Conclusion XGBoost proves to be an effective algorithm for predicting the occurrence of bone metastasis in patients with solitary, primary lung adenocarcinoma featuring pulmonary nodules below 3 cm in size. Moreover, its robust clinical applicability enhances its potential utility.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3