Affiliation:
1. College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
Abstract
Seed germination plays an important role in determining the composition and regeneration of plant populations (Stipa breviflora). However, the influencing factors and strategies employed for seed germination in desert grasslands under grazing remain unknown. Therefore, in this study, the reproductive allocation, seed density, seed properties, and corresponding seed germination rates of S. breviflora were examined. Possible situations encountered during dispersal were also simulated to determine their effects on seed germination. The results showed that reproductive individual density not subjected to grazing were significantly higher than those subjected to moderate and heavy grazing. For seed density and seed bank in soil, the highest values were observed for the no grazing treatment, followed by the moderate and heavy grazing treatments. The seed density for germination of soil seed banks was nearly one-fourth of seed density during the growing season. In addition, grazing treatments affected the phenotypic characteristics of seeds and reduced the lower limit of the weight of germinable seeds. Awn removal significantly increased germination. The longest germination time was observed for seeds that entered the soil at an angle of 0°. Our research demonstrated that grazing negatively affected the desert grassland edificator. Individual plants adopted different adaptation strategies under different grazing intensities; for example, a fixed proportion of the seed number and seed germination number of S. breviflora in the soil seed bank was maintained by exceeding the minimum weight of a seed for seed germination. During seed dispersion, the awn effectively prevented germination under unfavourable conditions and helped seeds enter the soil at an optimal angle for promoting germination.
Funder
National Natural Science Foundation of China
National Key Basic Research Program of China
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献