Reliability and concurrent validity of the iPhone® Compass application to measure thoracic rotation range of motion (ROM) in healthy participants

Author:

Furness James12,Schram Ben12,Cox Alistair J.2,Anderson Sarah L.2,Keogh Justin345

Affiliation:

1. Water Based Research Unit, Bond Institute of Health and Sport, Bond University, Gold Coast, Queensland, Australia

2. Department of Physiotherapy, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia

3. Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia

4. Sports Performance Research Centre New Zealand, AUT University, Auckland, New Zealand

5. Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, Australia

Abstract

Background Several water-based sports (swimming, surfing and stand up paddle boarding) require adequate thoracic mobility (specifically rotation) in order to perform the appropriate activity requirements. The measurement of thoracic spine rotation is problematic for clinicians due to a lack of convenient and reliable measurement techniques. More recently, smartphones have been used to quantify movement in various joints in the body; however, there appears to be a paucity of research using smartphones to assess thoracic spine movement. Therefore, the aim of this study is to determine the reliability (intra and inter rater) and validity of the iPhone® app (Compass) when assessing thoracic spine rotation ROM in healthy individuals. Methods A total of thirty participants were recruited for this study. Thoracic spine rotation ROM was measured using both the current clinical gold standard, a universal goniometer (UG) and the Smart Phone Compass app. Intra-rater and inter-rater reliability was determined with a Intraclass Correlation Coefficient (ICC) and associated 95% confidence intervals (CI). Validation of the Compass app in comparison to the UG was measured using Pearson’s correlation coefficient and levels of agreement were identified with Bland–Altman plots and 95% limits of agreement. Results Both the UG and Compass app measurements both had excellent reproducibility for intra-rater (ICC 0.94–0.98) and inter-rater reliability (ICC 0.72–0.89). However, the Compass app measurements had higher intra-rater reliability (ICC = 0.96 − 0.98; 95% CI [0.93–0.99]; vs. ICC = 0.94 − 0.98; 95% CI [0.88–0.99]) and inter-rater reliability (ICC = 0.87 − 0.89; 95% CI [0.74–0.95] vs. ICC = 0.72 − 0.82; 95% CI [0.21–0.94]). A strong and significant correlation was found between the UG and the Compass app, demonstrating good concurrent validity (r = 0.835, p < 0.001). Levels of agreement between the two devices were 24.8° (LoA –9.5°, +15.3°). The UG was found to consistently measure higher values than the compass app (mean difference 2.8°, P < 0.001). Conclusion This study reveals that the iPhone® app (Compass) is a reliable tool for measuring thoracic spine rotation which produces greater reproducibility of measurements both within and between raters than a UG. As a significant positive correlation exists between the Compass app and UG, this supports the use of either device in clinical practice as a reliable and valid tool to measure thoracic rotation. Considering the levels of agreement are clinically unacceptable, the devices should not be used interchangeably for initial and follow up measurements.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference37 articles.

1. Conservative management of shoulder pain in swimming;Blanch;Physical Therapy in Sport,2004

2. Statistical methods for assessing agreement between two methods of clinical measurement;Bland;International Journal of Nursing Studies,2010

3. Reliability and validity of four instruments for measuring lumbar spine and pelvic positions;Burdett;Physical Therapy,1986

4. Motion sensing in the iPhone 4: electronic compass;Dixon-Warren,2012

5. Mobile Consumer Survey 2015–The Australian Cut;Drumm,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3