Characterization of preferential flow in soils near Zarqa river (Jordan) using in situ tension infiltrometer measurements

Author:

Rahbeh Michel1

Affiliation:

1. University of Jordan, School of Agriculture, Department of Land, Water and Environment, Amman, Jordan

Abstract

Background The Zarqa River (ZR) is located in the northern part of Jordan and supplies King Talal Dam (KTD). The streamflow that discharges into KTD is composed of treated wastewater from the Khirbat Es-Samra water treatment plant (KTP) and runoff generated during the winter season. Thus, during the summer, the streamflow of the ZR is dominated by effluent from the KTP. Due to the severe scarcity of water in Jordan, a portion of the streamflow is utilized for irrigated agriculture in the ZR valley, located between the KTP and KTD. The groundwater in the vicinity of the ZR is vulnerable to contamination—a risk that may be exacerbated by the potential occurrence of preferential flow (PF). Therefore, the PF in the soils near the ZR should be carefully considered. Methods The macropore flux fraction (Qmacro) and macroscopic capillary length (λc) were determined from in situ measurements using a tension infiltrometer equipped with an infiltration disc with a diameter of 20 cm. The macropore was defined as the pore size that drains at a tension of less than —-3— cm. The λc less than 80 mm was considered to be an indication of PF. The measurements were taken at 69 sites along the ZR between the KTP and KTD. At each measurement site, the soil organic matter content (OM) and soil texture were determined using a composite soil sample obtained by excavating the soil beneath the infiltration disc to a depth of 10 cm. Results The data was split into two groups: the matrix flow group (MF), which includes data associated with λc > 80 mm, and the PF group, which includes data associated with λc < 80 mm. The Qmacro values of 0.67 and 0.57, respectively, for PF and MF were significantly different at p < 0.01 (t-test). The flow rates at h=0 were generally well associated with λc, as attested to by a significant difference between the averages of PF (57.8 mm/hr) and MF (21.0 mm/hr) at p < 0.01 (t-test). The OM was positively associated with PF. This was statistically confirmed by a t-test at p < 0.01. The average sand and clay contents of PF and MF were not statistically different. Analysis of the ratio of Soil Organic Carbon (SOC) to clay showed that the average SOC/clay of the PF (14%) was larger than that of the MF (13.3%). After the exclusion of soils with clay content less than 8%, the differences between the SOC/clay averages of PF (9.8%) and MF (7.5%) were significant at p < 0.05, as shown by a WM-test. Conclusion The OM was positively associated with PF. Soil texture—and clay content in particular—influenced the λcvalues. However, the association of clay content with PF was not statistically significant. Consideration of the SOC/clay ratio showed that the tendency toward PF increases as the complexation of the clay content increases. This was most obvious in soils with a clay content of greater than 8% and SOC/clay of approximately 10%. The OM either influences or is inter-correlated with the processes responsible for the formation of macropores.

Funder

USAID/Partnerships for Enhanced Engagement in Research (PEER) program

United States Agency for International Development

National Academies of Sciences, Engineering, and Medicine

Scientific Research Support Fund

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3