Genome-wide analysis of the Catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: identification and expression profiles in normal, tension, and opposite wood

Author:

Lu Nan1,Ma Wenjun1,Han Donghua2,Liu Ying3,Wang Zhi1,Wang Nan1,Yang Guijuan1,Qu Guanzheng4,Wang Qiuxia5,Zhao Kun6,Wang Junhui1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China

2. College of Landscape Architecture, Nanjing Forestry University, Nanjing, China

3. College of Forestry, Northwest A&F University, Yangling, China

4. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China

5. Nanyang Research Institute of Forestry, Nanyang, China

6. Luoyang Academy of Agriculture and Forestry, Luoyang, China

Abstract

Caffeic acid O-methyltransferase (COMT) is an important protein that participates in lignin synthesis and is associated with the ratio of G-/S-type lignin in plants. COMTs are associated with the wood properties of forest trees; however, little known about the COMT family in Catalpa bungei, a valuable timber tree species in China . We performed a comprehensive analysis of COMT genes in the C. bungei genome by describing the gene structure and phylogenetic relationships of each family member using bioinformatics-based methods. A total of 23 putative COMT genes were identified using the conserved domain sequences and amino acid sequences of COMTs from Arabidopsis thaliana and Populus trichocarpa as probes. Phylogenetic analysis showed that 23 CbuCOMTs can be divided into three groups based on their structural characteristics; five conserved domains were found in the COMT family. Promoter analysis indicated that the CbuCOMT promoters included various cis-acting elements related to growth and development. Real-time quantitative polymerase chain reaction (PCR) analysis showed differential expression among CbuCOMTs. CbuCOMT2, 7, 8, 9, 10, 12, 13, 14, 21, and 23 were mainly expressed in xylem. Only CbuCOMT23 was significantly downregulated in tension wood and upregulated in opposite wood compared to normal wood. Our study provides new information about the CbuCOMT gene family and will facilitate functional characterisation in further research.

Funder

Forestry Industry Research Special Funds

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3