Evolution of parasitism and mutualism between filamentous phage M13 andEscherichia coli

Author:

Shapiro Jason W.12,Williams Elizabeth S.C.P.1,Turner Paul E.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States

2. Department of Biology, Loyola University Chicago, Chicago, IL, United States

Abstract

Background.How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its hostEscherichia coli.Results.The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist ofE. coli. We then allowedE. coliand M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria.Conclusions.These data suggest a positive correlation between the positive effects of M13 onE. colihosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria.

Funder

Yale Graduate Program in Ecology and Evolutionary Biology

Yale Institute for Biospheric Studies

US National Science Foundation

NSF BEACON Center for the Study of Evolution in Action

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference48 articles.

1. The evolution of cooperation;Axelrod;Science,1981

2. Curing of an Excherichia coli episome by rifampicin;Bazzicalupo;Proceedings of the National Academy of Sciences of the United States of America,1972

3. Natural selection, infectious transfer and the existence conditions for bacterial plasmids;Bergstrom;Genetics,2000

4. Effects of bacteriophage f1 gene III protein on the host cell membrane;Boeke;Molecular & General Genetics,1982

5. An analysis of transformations;Box;Journal of the Royal Statistical Society. Series B (Methodological),1964

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3