Microplastics do not affect bleaching of Acropora cervicornis at ambient or elevated temperatures

Author:

Plafcan Martina M.1,Stallings Christopher D.1

Affiliation:

1. College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America

Abstract

Microplastic pollution can harm organisms and ecosystems such as coral reefs. Corals are important habitat-forming organisms that are sensitive to environmental conditions and have been declining due to stressors associated with climate change. Despite their ecological importance, it is unclear how corals may be affected by microplastics or if there are synergistic effects with rising ocean temperatures. To address this research gap, we experimentally examined the combined effects of environmentally relevant microplastic concentrations (i.e., the global average) and elevated temperatures on bleaching of the threatened Caribbean coral, Acropora cervicornis. In a controlled laboratory setting, we exposed coral fragments to orthogonally crossed treatment levels of low-density polyethylene microplastic beads (0 and 11.8 particles L−1) and water temperatures (ambient at 28 °C and elevated at 32 °C). Zooxanthellae densities were quantified after the 17-day experiment to measure the bleaching response. Regardless of microplastic treatment level, corals in the elevated temperature treatment were visibly bleached and necrotic (i.e., significant negative effect on zooxanthellae density) while those exposed to ambient temperature remained healthy. Thus, our study successfully elicited the expected bleaching response to a high-water temperature. However, we did not observe significant effects of microplastics at either individual (ambient temperature) or combined levels (elevated temperature). Although elevated temperatures remain a larger threat to corals, responses to microplastics are complex and may vary based on focal organisms or on plastic conditions (e.g., concentration, size, shape). Our findings add to a small but growing body of research on the effects of microplastics on corals, but further work is warranted in this emerging field to fully understand how sensitive ecosystems are affected by this pollutant.

Funder

The Anne & Werner Von Rosenstiel Fellowship

The Linton Tibbetts Endowed Graduate Student Fellowship

The Fish Florida Scholarship

The Gumbo Limbo Research Grant

The University of South Florida’s College of Marine Science

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3