Soil mineralized carbon drives more carbon stock in coniferous-broadleaf mixed plantations compared to pure plantations

Author:

Hao Zhenzhen123,Quan Zhanjun3,Han Yu3,Lv Chen4,Zhao Xiang5,Jing Wenjie3,Zhu Linghui6,Ma Junyong17

Affiliation:

1. Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing, China

2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Chinese Research Academy of Environmental Sciences, Beijing, China

3. State Key Laboratory of Grassland Agro-Ecosystem, Institute of Arid AgroEcology, School of Life Sciences, Lanzhou University, Lanzhou, China

4. Xichuan County Water Conservancy Bureau, Henan, China

5. State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Water Research Institute, Chinese Research Academy of Environmental Sciences, Beijing, China

6. School of Soil and Water Conservation, Beijing Forestry University, Beijing, China

7. Key Laboratory of Ministry of Forest Cultivation and Conservation of Ministry of Education,Beijing Forestry University, Beijing, China

Abstract

Forest soil carbon (C) sequestration has an important effect on global C dynamics and is regulated by various environmental factors. Mixed and pure plantations are common afforestation choices in north China, but how forest type and environmental factors interact to affect soil C stock remains unclear. We hypothesize that forest type changes soil physicochemical properties and surface biological factors, and further contributes to soil active C components, which together affect soil C sequestration capacity and C dynamic processes. Three 46-year-old 25 m × 25 m pure Pinus tabulaeformis forests (PF) and three 47-year-old 25 m × 25 m mixed coniferous-broadleaf (Pinus tabulaeformis-Quercus liaotungensis) forests (MF) were selected as the two treatments and sampled in August 2016. In 2017, soil temperature (ST) at 10 cm were measured every 30 min for the entire vegetation season. Across 0–50 cm (five soil layers, 10 cm per layer), we also measured C components and environmental factors which may affect soil C sequestration, including soil organic carbon (SOC), soil total nitrogen (STN), dissolved organic carbon (DOC), microbial biomass carbon (MBC), soil moisture (SM) and soil pH. We then incubated samples for 56 days at 25 °C to monitor the C loss through CO2 release, characterized as cumulative mineralization carbon (CMC) and mineralized carbon (MC). Our results indicate that ST, pH, SM and litter thickness were affected by forest type. Average SOC stock in MF was 20% higher than in PF (MF: 11.29 kg m−2; PF: 13.52 kg m−2). Higher CMC under PF caused more soil C lost, and CMC increased 14.5% in PF (4.67 g kg−1 soil) compared to MF (4.04 g kg−1 soil) plots over the two-month incubation period. SOC stock was significantly positively correlated with SM (p < 0.001, R2 = 0.43), DOC (p < 0.001, R2 = 0.47) and CMC (p < 0.001, R2 = 0.33), and significantly negatively correlated with pH (p < 0.001, R2 = −0.37) and MC (p < 0.001, R2 = −0.32). SOC stock and litter thickness may have contributed to more DOC leaching in MF, which may also provide more C source for microbial decomposition. Conversely, lower SM and pH in MF may inhibit microbial activity, which ultimately makes higher MC and lower CMC under MF and promotes C accumulation. Soil mineralized C drives more C stock in coniferous-broadleaf mixed plantations compared to pure plantations, and CMC and MC should be considered when soil C balance is assessed.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3