Genome-wide analysis of the strigolactone biosynthetic and signaling genes in grapevine and their response to salt and drought stresses

Author:

Yu Yanyan1,Xu Jinghao1,Wang Chuanyin2,Pang Yunning1,Li Lijian1,Tang Xinjie1,Li Bo3,Sun Qinghua1

Affiliation:

1. College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China

2. Forestry Bureau of Heze, Heze, Shandong, China

3. Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China

Abstract

Strigolactones (SLs) are a novel class of plant hormones that play critical roles in regulating various developmental processes and stress tolerance. Although the SL biosynthetic and signaling genes were already determined in some plants such as Arabidopsis and rice, the information of SL-related genes in grapevine (Vitis vinifera L.) remains largely unknown. In this study, the SL-related genes were identified from the whole grapevine genome, and their expression patterns under salt and drought stresses were determined. The results indicated that the five genes that involved in the SL biosynthesis included one each of the D27, CCD7, CCD8, MAX1 and LBO genes, as well as the three genes that involved in the SL signaling included one each of the D14, MAX2, D53 genes. Phylogenetic analysis suggested that these SL-related proteins are highly conserved among different plant species. Promoter analysis showed that the prevalence of a variety of cis-acting elements associated with hormones and abiotic stress existed in the promoter regions of these SL-related genes. Furthermore, the transcription expression analysis demonstrated that most SL-related genes are involved in the salt and drought stresses response in grapevine. These findings provided valuable information for further investigation and functional analysis of SL biosynthetic and signaling genes in response to salt and drought stresses in grapevine.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Shandong Provincial Key Research and Development Project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3