Phylogeography of Amygdalus mongolica in relation to Quaternary climatic aridification and oscillations in northwestern China

Author:

Zhang Lin1,Sun Fangfang1,Ma Songmei1,Wang Chuncheng2,Wei Bo3,Zhang Yunling4

Affiliation:

1. Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Science, Shihezi, Xinjiang, China

2. Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi, Xinjiang, China

3. Institute of Geographic Sciences and Natural Resources Research, Beijing, China

4. General grassland station of Xinjiang, Urumqi, Xingjiang, China

Abstract

Quaternary period geological events and climatic oscillations significantly affect the geographic structure and genetic diversity of species distribution in arid northwestern China. Amygdalus mongolica is a relict and endangered shrub that occurs primarily in arid areas of northwestern China. Based on variation patterns present at three cpDNA regions (psbK-psbI, trnL-trnF and trnV) and in one nDNA sequence (ITS1-ITS4) in 174 individuals representing 15 populations, the spatial genetic structure and demographic history of A. mongolica was examined across its entire geographic range. The 17 different haplotypes and 10 ribotypes showed two lineages, distributed across the Western (Mazong Mountains, Hexi Corridor, and Alxa Left Banner) and Eastern regions (Urad Houqi, Yinshan Mountains, Urad Zhongqi, and Daqing Mountains) according to the median-joining network and the BI (Bayesian inference) and ML (Maximum likelihood) trees. AMOVA analysis demonstrated that over 65% of the observed genetic variation was related to this lineage split. The expansions of the Ulanbuhe and Tengger deserts and the eastward extension of the Yinshan Mountains since the Quaternary period likely interrupted gene flow and triggered the observed divergence in the two allopatric regions; arid landscape fragmentation accompanied by local environmental heterogeneity further increased local adaptive differentiation between the Western and Eastern groups. Based on the evidence from phylogeographical patterns and the distribution of genetic variation, A. mongolica distributed in the eastern and western regions are speculated to have experienced eastward migration along the southern slopes of the Lang Mountains and westward migration along the margins of the Ulanbuhe and Tengger deserts to the Hexi Corridor, respectively. For setting a conservation management plan, it is recommended that the south slopes of the Lang Mountains and northern Helan Mountains be identified as the two primary conservation areas, as they have high genetic variation and habitats that are more suitable.

Funder

National Natural Science Foundation of China

Grassland Ecological Restoration and Management Grant Project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3