Affiliation:
1. Institute of Physical Culture Sciences, Laboratory of Kinesiology, Functional and Structural Human Research Center, University of Szczecin, Szczecin, Poland
2. Department of Physical Education and Sport, Pomeranian Medical University, Szczecin, Poland
3. CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, University of Granada, Granada, Spain
Abstract
Background
The ability to track multiple objects plays a key role in team ball sports actions. However, there is a lack of research focused on identifying multiple object tracking (MOT) performance under rapid, dynamic and ecologically valid conditions. Therefore, we aimed to assess the effects of manipulating postural stability on MOT performance.
Methods
Nineteen team sports players (soccer, basketball, handball) and sixteen sedentary individuals performed the MOT task under three levels of postural stability (high, medium, and low). For the MOT task, participants had to track three out of eight balls for 10 s, and the object speed was adjusted following a staircase procedure. For postural stability manipulation, participants performed three identical protocols (randomized order) of the MOT task while standing on an unstable platform, using the training module of the Biodex Balance System SD at levels 12 (high-stability), eight (medium-stability), and four (low-stability).
Results
We found that the ability to track moving targets is dependent on the balance stability conditions (F2,66 = 8.7, p < 0.001, η² = 0.09), with the disturbance of postural stability having a negative effect on MOT performance. Moreover, when compared to sedentary individuals, team sports players showed better MOT scores for the high-stability and the medium-stability conditions (corrected p-value = 0.008, Cohen’s d = 0.96 and corrected p-value = 0.009, Cohen’s d = 0.94; respectively) whereas no differences were observed for the more unstable conditions (low-stability) between-groups.
Conclusions
The ability to track moving targets is sensitive to the level of postural stability, with the disturbance of balance having a negative effect on MOT performance. Our results suggest that expertise in team sports training is transferred to non-specific sport domains, as shown by the better performance exhibited by team sports players in comparison to sedentary individuals. This study provides novel insights into the link between individual’s ability to track multiple moving objects and postural control in team sports players and sedentary individuals.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献