Assessment of pan coefficient models for the estimation of the reference evapotranspiration in a Mediterranean environment in Turkey

Author:

Koç Deniz Levent1

Affiliation:

1. Agricultural Structures and Irrigation/Agriculture Faculty, Çukurova University, Adana, Turkey

Abstract

Reference evapotranspiration (ETo) is essential for irrigation practices and the management of water resources and plays a vital role in agricultural and hydro-meteorological studies. The FAO-56 Penman-Monteith (PM) equation, recommended as the sole standard method of calculating ETo by the Food and Agriculture Organization of the United Nations (FAO), is the most commonly used and accurate model to determine the ETo and evaluate ETo equations. However, it requires many meteorological variables, often restricting its applicability in regions with poor or missing meteorological observations. Many empirical and semi-empirical equations have been developed to predict the ET0 from numerous meteorological data. The FAO-24 Pan method is commonly used worldwide to estimate ETo because it is simple and requires only pan coefficients. However, pan coefficients (Kpan) should be determined accurately to estimate ET0 using the FAO-24 Pan method. As the accuracy and reliability of the Kpan models can be different from one location to another, they should be tested or calibrated for different climates and surrounding conditions. In this study, the performance of the eight Kpan models was evaluated using 22-year daily climate data for the summer growing season in Adana, which has a Mediterranean climate in Turkey. The results showed that the mean seasonal pan coefficients estimated by all Kpan models differed significantly at a 1% significance level from those observed by FAO-56 PM according to the two-tail z test. In the study, ETo values estimated by Kpan models were compared against those obtained by the FAO-56 PM equation. The seasonal and monthly performance of Kpan models was varied, and the Wahed & Snyder model presented the best performance for ETo estimates at the seasonal scale. (RMSE = 0.550 mm d−1; MAE = 0.425 mm d−1; MBE = −0.378 mm d−1; RE = 0.134). In addition, it showed a good performance in estimating ETo on a monthly scale. The Orang model showed the lowest performance in estimating ETo among all models, with a very high relative error on the seasonal scale. (RMSE = 1.867 mm d−1; MAE = 1.806 mm d−1; MBE = −1.806 mm d−1; RE = 0.455). In addition, it showed the poorest performance on a monthly scale. Hence, the Wahed & Snyder model can be considered to estimate ETo under Adana region conditions after doing the necessary calibration.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3