DNA metabarcoding reveals that coyotes in New York City consume wide variety of native prey species and human food

Author:

Henger Carol S.1,Hargous Emily1,Nagy Christopher M.2ORCID,Weckel Mark3,Wultsch Claudia34,Krampis Konstantinos456,Duncan Neil3,Gormezano Linda3,Munshi-South Jason1ORCID

Affiliation:

1. Louis Calder Biological Field Station, Fordham University, Armonk, New York, United States

2. Mianus River Gorge, Bedford, New York, United States

3. American Museum of Natural History, New York, New York, United States

4. Bioinformatics and Computational Genomics Laboratory, City University of New York, Hunter College, New York, New York, United States

5. Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States

6. Institute of Computational Biomedicine, Weill Medical College of Cornell University, New York, New York, United States

Abstract

Carnivores are currently colonizing cities where they were previously absent. These urban environments are novel ecosystems characterized by habitat degradation and fragmentation, availability of human food, and different prey assemblages than surrounding areas. Coyotes (Canis latrans) established a breeding population in New York City (NYC) over the last few decades, but their ecology within NYC is poorly understood. In this study, we used non-invasive scat sampling and DNA metabarcoding to profile vertebrate, invertebrate, and plant dietary items with the goal to compare the diets of urban coyotes to those inhabiting non-urban areas. We found that both urban and non-urban coyotes consumed a variety of plants and animals as well as human food. Raccoons (Procyon lotor) were an important food item for coyotes within and outside NYC. In contrast, white-tailed deer (Odocoileus virginianus) were mainly eaten by coyotes inhabiting non-urban areas. Domestic chicken (Gallus gallus) was the human food item found in most scats from both urban and non-urban coyotes. Domestic cats (Felis catus) were consumed by urban coyotes but were detected in only a small proportion of the scats (<5%), which differs markedly from high rates of cat depredation in some other cities. In addition, we compared our genetic metabarcoding analysis to a morphological analysis of the same scat samples. We found that the detection similarity between the two methods was low and it varied depending on the type of diet item.

Funder

Clare Boothe Luce Graduate Fellowship Program

Mianus River Gorge Research Assistantship Program

Louis Calder Graduate Student Research Grant

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3