Hydrogen sulphide alleviates Fusarium Head Blight in wheat seedlings

Author:

Yao Yuanyuan12,Kan Wenjie1,Su Pengfei12,Zhu Yan12,Zhong Wenling12,Xi Jinfeng12,Wang Dacheng1,Tang Caiguo1,Wu Lifang123

Affiliation:

1. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China

2. University of Science and Technology of China, Hefei, China

3. Zhongke Taihe Experimental Station, Taihe, China

Abstract

Hydrogen sulphide (H2S), a crucial gas signal molecule, has been reported to be involved in various processes related to development and adversity responses in plants. However, the effects and regulatory mechanism of H2S in controlling Fusarium head blight (FHB) in wheat have not been clarified. In this study, we first reported that H2S released by low concentrations of sodium hydrosulphide (NaHS) could significantly alleviate the FHB symptoms caused by Fusarium graminearum (F. graminearum) in wheat. We also used coleoptile inoculation to investigate the related physiological and molecular mechanism. The results revealed that FHB resistance was strongly enhanced by the H2S released by NaHS, and 0.3 mM was confirmed as the optimal concentration. H2S treatment dramatically reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) while enhancing the activities of antioxidant enzymes. Meanwhile, the relative expressions levels of defence-related genes, including PR1.1, PR2, PR3, and PR4, were all dramatically upregulated. Our results also showed that H2S was toxic to F. graminearum by inhibiting mycelial growth and spore germination. Taken together, the findings demonstrated the potential value of H2S in mitigating the adverse effects induced by F. graminearum and advanced the current knowledge regarding the molecular mechanisms in wheat.

Funder

Major Special Project of Anhui Province, China

The Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences, China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3